If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n+12=(1/2)(14n+24)
We move all terms to the left:
7n+12-((1/2)(14n+24))=0
Domain of the equation: 2)(14n+24))!=0We add all the numbers together, and all the variables
n∈R
7n-((+1/2)(14n+24))+12=0
We multiply parentheses ..
-((+14n^2+1/2*24))+7n+12=0
We multiply all the terms by the denominator
-((+14n^2+1+7n*2*24))+12*2*24))=0
We calculate terms in parentheses: -((+14n^2+1+7n*2*24)), so:We add all the numbers together, and all the variables
(+14n^2+1+7n*2*24)
We get rid of parentheses
14n^2+7n*2*24+1
Wy multiply elements
14n^2+336n*2+1
Wy multiply elements
14n^2+672n+1
Back to the equation:
-(14n^2+672n+1)
-(14n^2+672n+1)=0
We get rid of parentheses
-14n^2-672n-1=0
a = -14; b = -672; c = -1;
Δ = b2-4ac
Δ = -6722-4·(-14)·(-1)
Δ = 451528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{451528}=\sqrt{4*112882}=\sqrt{4}*\sqrt{112882}=2\sqrt{112882}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-672)-2\sqrt{112882}}{2*-14}=\frac{672-2\sqrt{112882}}{-28} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-672)+2\sqrt{112882}}{2*-14}=\frac{672+2\sqrt{112882}}{-28} $
| (X+50)*2=4x+40 | | -5(y-6)=-2y+27 | | -13=-n-7 | | -21=-4x-6x | | v-12=-7 | | (4y+1)(2+y)=0 | | 4x+40=(x+50)x2 | | (X/3+1/3)+(x/7+2/7)=5 | | 4x+40+x^2+7x=2x^2+5x | | p+15/42=p+5/14 | | -4x(x+9)(x-3)=0 | | h=70-4.9^2 | | 3x+6-5(x+1)=7x+6 | | 2/x+32x=4 | | -4u(u+9)(u-3)=0 | | 3x+2+4x-3-x=5x-x+11-x | | 4x-3=7x-3 | | 1/1-x+x=3 | | 25=x/8+2 | | 3(2x-1)+4=5x+3-x | | 1.3(x-0.6)+0.7x=0.5(x-0.3)+0.42 | | 2^5.5=4x^2 | | x2-56=140 | | 2-a/3=7 | | -10a-10=-7 | | 2/7m-1/7=3/56 | | 7f+18=10-9 | | x/5+8=21 | | -24-8m+2=-2(11+4m) | | 1/3x-1/7x=8 | | (y/3)+4=15 | | X+2/3=4-x+5/2 |