If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| 3v+7-3v=12-5 | | 6y+5=–7 | | 14m+42=6m-2 | | 50+13.25x=25.75x, | | 5(x+2)+11=29-3x | | -3-2x-7=1 | | -8-6d=-20 | | 2-3x=180 | | 2x–4=11–x | | (3x+3)(8x29)(2x-12)=0 | | 50=4x-3(9+5x) | | 2+4/9x=I | | 160+0.25x=350 | | 5y-7=40.2 | | 2-3x+49+36=180 | | -25x+10=110 | | -2/3n=21/3 | | 2.5x-12=53 | | 4k^2-4k+6=-4 | | 6(x+2)^2=54 | | 7m=29.75 | | 4=3(p−4)−5 | | 5m=36.25 | | -30=12=-6r | | 4+4f=–4(–2f+8) | | 8x^2+3x+3=4 | | -6(3.5n-6)=99 | | 10c-3=-43 | | (7x-8)+(3x-9)+43=180 | | 6(2y-9)=-78 | | 100/x=150/2 | | 9^(-x-4)=27 |