If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m-3/5m=6/5m
We move all terms to the left:
7m-3/5m-(6/5m)=0
Domain of the equation: 5m!=0
m!=0/5
m!=0
m∈R
Domain of the equation: 5m)!=0We add all the numbers together, and all the variables
m!=0/1
m!=0
m∈R
7m-3/5m-(+6/5m)=0
We get rid of parentheses
7m-3/5m-6/5m=0
We multiply all the terms by the denominator
7m*5m-3-6=0
We add all the numbers together, and all the variables
7m*5m-9=0
Wy multiply elements
35m^2-9=0
a = 35; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·35·(-9)
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{35}}{2*35}=\frac{0-6\sqrt{35}}{70} =-\frac{6\sqrt{35}}{70} =-\frac{3\sqrt{35}}{35} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{35}}{2*35}=\frac{0+6\sqrt{35}}{70} =\frac{6\sqrt{35}}{70} =\frac{3\sqrt{35}}{35} $
| 2x+9=4x−5−2x | | -18=3(x-5)-4(8+8x) | | 2x+3=−15 | | 2x+4(2+2x)=7+10x | | -10-g=3g+10 | | -110=-3n | | 1/2*x+1/4x=16 | | −6=−10y | | −6= −10y−10y | | 2x-4(-1-3x)=-15+14 | | -1s+8+10=-6+2s | | 9x/6=-3 | | x−1=4x+7 | | .15x=14400 | | -6c-1=7c-7-10c | | x+13=-70 | | 4(y-6)=-24 | | (2a+3)(a+6)(3a-4)(a-2)=360 | | 56y+15(y−6)=y+18 | | 1/2(10z+6)-2=4(z-4) | | m-18=-2 | | 2x−6=3x+1−x−73x+1=43 | | (2x=2)(3x-63) | | 6(x+5)=6+6x | | 9x+18=12-3 | | 11(8p+5)-9=12p+46 | | 5(x-4)+4+x=4(x+3+x | | 13e9e+4=−5e+14+13e9, | | -4(2x-6=-8x+24 | | y+14=-⁷ | | -13=2(-1-4k)+3(-5k+4) | | −5|x−3|=−12 |