If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m(4m=10)
We move all terms to the left:
7m(4m-(10))=0
We multiply parentheses
28m^2-70m=0
a = 28; b = -70; c = 0;
Δ = b2-4ac
Δ = -702-4·28·0
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-70}{2*28}=\frac{0}{56} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+70}{2*28}=\frac{140}{56} =2+1/2 $
| -9/4b+4/5=7/8 | | 5(6r-7)=5.9 | | 0=21x^2+56x | | 4x+5(x+17)=180 | | 25x1.6=+0 | | 0.6=0.7x | | 4x+72=78-2x | | x4-5x2-6=0 | | 7-5(-2x+6)=17 | | 3b+4b-5=23 | | -4(m+3)=34 | | 25x^2-50x-26=0 | | 60=-3(2m+6) | | (3y-35)=2y | | 8-1/2x=-(4+x) | | 5(x-4)+2(1-x)=-9 | | (2/3)x=3.333 | | -7x=-2x+10 | | 166=2x-50 | | 12n+3=46 | | x+90=126 | | 2(z+3)+z=-9 | | 2a+3a=150 | | (3x-34)=5x | | x-12-5=139 | | 0=-2(x)^3+9x^2+9x+11 | | 18-2g=-7/9 | | 9x+15=95 | | 3÷q=-3 | | 3x+-4=-2 | | 5m-1-5m=-1 | | -13=7y=64 |