If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k(k+9)=9(k-5)-14
We move all terms to the left:
7k(k+9)-(9(k-5)-14)=0
We multiply parentheses
7k^2+63k-(9(k-5)-14)=0
We calculate terms in parentheses: -(9(k-5)-14), so:We get rid of parentheses
9(k-5)-14
We multiply parentheses
9k-45-14
We add all the numbers together, and all the variables
9k-59
Back to the equation:
-(9k-59)
7k^2+63k-9k+59=0
We add all the numbers together, and all the variables
7k^2+54k+59=0
a = 7; b = 54; c = +59;
Δ = b2-4ac
Δ = 542-4·7·59
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-4\sqrt{79}}{2*7}=\frac{-54-4\sqrt{79}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+4\sqrt{79}}{2*7}=\frac{-54+4\sqrt{79}}{14} $
| (x+4)(x-8)=32 | | 8x90=8x9xN | | v+7=9+12 | | a^2-15a=-80 | | 4-p=9. | | 2x+14=70+(10x) | | -12=x-3/3 | | 6a-1+9-4a=0 | | (s^2+1)(s^2-2s+2)=0 | | 200+5n-10=450 | | (x+9)^4-25(x+9)^2=0 | | 7(m+4)-3m=70-10m | | (6x+9)=(2x+4) | | 4=12+5x1 | | -4.9{x}^{2}+10x+1200=0 | | 5+p=2 | | (6x+9)=(2x+4( | | 8(1/2+n)=12 | | 5-2x+3=-8+4x-2 | | 1/3*6*6*8=x | | (14x+8)+(13x+15)=180 | | 18+6t=22t-14 | | 7=-c/7 | | 1/3(9x+3)=3(x-1)+4 | | 81-2q=7q | | 11w=39+8w | | x^2+x=0.95 | | 6d+2(d+3)=46 | | 0.5x–4=11 | | -8t=-36 | | -x+4=-9.8+2 | | x^+x=0.95 |