If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+9k-1=0
a = 7; b = 9; c = -1;
Δ = b2-4ac
Δ = 92-4·7·(-1)
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{109}}{2*7}=\frac{-9-\sqrt{109}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{109}}{2*7}=\frac{-9+\sqrt{109}}{14} $
| 4t^2/2t=0 | | z/3-2= 2 | | 1n+8=3n-4 | | f/4−2=2 | | 9e^2=49 | | y/3+3=7 | | 36-4m^2=0 | | 4(3x-8)-10x=8 | | 20+(4/5)x=8 | | -2x+15x=23-10 | | 6x^2=20x-7 | | 5p-6+5=p+7+2p | | (x*7)+7/5=72 | | 2(−6+v)=−38 | | x/9+7=-7 | | 4(2x–4)=8+2x+ | | 4(2x–4)=8+2x+8 | | z/10+2=1 | | 2x(6+3x)=0 | | X+.15x=173 | | -3p+4=28 | | -2(a-8)=-6 | | -3(x-8)=87 | | 5(x+1)=4-(x-2) | | -16t^2+54t+40=0 | | 3/2x-3=7 | | 10*b=90 | | 8(3x–7)=–6(x+7)+4 | | 10#b=90 | | 4x-5=11/x | | 13=-b-1 | | X^2-5x-21=-3 |