7c-10=32/c

Simple and best practice solution for 7c-10=32/c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7c-10=32/c equation:



7c-10=32/c
We move all terms to the left:
7c-10-(32/c)=0
Domain of the equation: c)!=0
c!=0/1
c!=0
c∈R
We add all the numbers together, and all the variables
7c-(+32/c)-10=0
We get rid of parentheses
7c-32/c-10=0
We multiply all the terms by the denominator
7c*c-10*c-32=0
We add all the numbers together, and all the variables
-10c+7c*c-32=0
Wy multiply elements
7c^2-10c-32=0
a = 7; b = -10; c = -32;
Δ = b2-4ac
Δ = -102-4·7·(-32)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{249}}{2*7}=\frac{10-2\sqrt{249}}{14} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{249}}{2*7}=\frac{10+2\sqrt{249}}{14} $

See similar equations:

| 4x+2x=-x+35 | | 3(2–k)=-3k+2 | | 200-1.5=x | | 7x+9=8x+26 | | 5=3(j-7)-2 | | −4x+6=11 | | |x+6|=3x+2 | | 6y=-468 | | -117-5x=-11x+33 | | 2x2+7=21 | | 3x-16=40+5x | | 8v-7+6v=15+6+6v-4 | | 3(w+6)=7w+42 | | 2(2x+4)=4(x×2 | | 3g+15=4g+12 | | 9n+-8n=-15 | | 2x-1+3=8 | | 2x−4+3x=11 | | 4n+6=12-2n | | 4(c-14)=-48 | | -6(-8+8p)=432 | | 3x+5=x10 | | 4x-4=4x-8=84 | | -164=15y | | -67+11x=6x+103 | | 3(x-2)+5=9x-25 | | (x+9)/4=-11 | | p/2-1=4 | | 29=9-5v | | 3(3x+1)=9x−3 | | v-123=117 | | -8*g=-56 |

Equations solver categories