7=4+q2

Simple and best practice solution for 7=4+q2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7=4+q2 equation:



7=4+q2
We move all terms to the left:
7-(4+q2)=0
We add all the numbers together, and all the variables
-(+q^2+4)+7=0
We get rid of parentheses
-q^2-4+7=0
We add all the numbers together, and all the variables
-1q^2+3=0
a = -1; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-1)·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-1}=\frac{0-2\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-2} =-\frac{\sqrt{3}}{-1} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-1}=\frac{0+2\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-2} =\frac{\sqrt{3}}{-1} $

See similar equations:

| -8+3x=-7 | | 151=4x+3(3x+7) | | -10=-6+2w | | 152=2x+7(4x-4) | | 147=7x+2(2x+13) | | w-12.56=3.56 | | -4(7x+11)=-2(14x+22 | | 2e-12=7e+8. | | 3x+3(4x-18)=36 | | -10.1=9.1+y/6 | | 2x-10+3x+40=90 | | 4n−13=2n+9 | | c=√3c-8 | | (2x+38)=(6x-2) | | 1/6x+5=11 | | -6x-4=6x=4 | | 8.34x+75.06=150.12 | | 5n+2=17154193 | | 2n+7=1-3 | | 10k^2=-78 | | 6k^2=-78 | | 10k^2+6=-72 | | -4m-4m= | | 17–9y=–3+16y | | Xx4/5=7/20 | | 2T+8+1/2=-t=11 | | (-1)=-6x+20 | | |n/4|=2 | | 2x+35+9=x+32 | | -8÷3=-6÷5x-5÷2 | | 4t+15=3 | | 1/2(x-60)=15+8x |

Equations solver categories