If it's not what You are looking for type in the equation solver your own equation and let us solve it.
783=j(j+2)
We move all terms to the left:
783-(j(j+2))=0
We calculate terms in parentheses: -(j(j+2)), so:We get rid of parentheses
j(j+2)
We multiply parentheses
j^2+2j
Back to the equation:
-(j^2+2j)
-j^2-2j+783=0
We add all the numbers together, and all the variables
-1j^2-2j+783=0
a = -1; b = -2; c = +783;
Δ = b2-4ac
Δ = -22-4·(-1)·783
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-56}{2*-1}=\frac{-54}{-2} =+27 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+56}{2*-1}=\frac{58}{-2} =-29 $
| 14.8+c=-20.1 | | 0.014809-0.042x=3x^2 | | 3x6−6x2=3x | | 6^d=12^ | | g/3=3.2 | | 3x^2+0.042x-0.000191=0.015 | | 7a+10=57 | | X(x+0)=0 | | 13.5*9.2=a | | 60×30x=390 | | 9-3x/2=6x | | 6t+7=-11 | | 2x1+4x2=400 | | 2x1+4x2=4 | | 3.256x−8.639=−3.1(8.625x+4.917) | | 7+x/3=40 | | 30=100(x-36.75)/x | | 5(x−9)=8(x+7)−x | | 66.75=100x/x | | -5x^2+10x-12=0 | | -18.9+0.33m=121.35 | | 4t+2=26 | | 31.5+0.12m=79.5 | | 12n/12^5=12^4 | | 2x-x-100=700 | | 38=v/2+16 | | 5x+27=-9 | | 5x+16=11.5 | | 2x+x+100=700 | | -4x+9-12x-5=26 | | .000191-0.042x=3x^2 | | 4.25x-10=53.75 |