780=(2x-6)*(x+8)

Simple and best practice solution for 780=(2x-6)*(x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 780=(2x-6)*(x+8) equation:



780=(2x-6)(x+8)
We move all terms to the left:
780-((2x-6)(x+8))=0
We multiply parentheses ..
-((+2x^2+16x-6x-48))+780=0
We calculate terms in parentheses: -((+2x^2+16x-6x-48)), so:
(+2x^2+16x-6x-48)
We get rid of parentheses
2x^2+16x-6x-48
We add all the numbers together, and all the variables
2x^2+10x-48
Back to the equation:
-(2x^2+10x-48)
We get rid of parentheses
-2x^2-10x+48+780=0
We add all the numbers together, and all the variables
-2x^2-10x+828=0
a = -2; b = -10; c = +828;
Δ = b2-4ac
Δ = -102-4·(-2)·828
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6724}=82$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-82}{2*-2}=\frac{-72}{-4} =+18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+82}{2*-2}=\frac{92}{-4} =-23 $

See similar equations:

| (3/5)=(n+2/78) | | 4x=3x= | | 12x+19+(22x-9)=180 | | 6m=m+8 | | 12x−15=6−3x | | 5x-7=18x= | | 4x-3=+5x=96 | | 4y+23/7=5 | | (36)*(20)=(x+6)*(2x-6) | | 220=10(x-70)+100 | | 3x^2+2x-5=-4x+9 | | x=7/5x=60 | | –4n+7=–5n | | (36)(20)=(x+6)(2x-6) | | 120+1h=310 | | -4=9x+4x-7 | | 20−4w=16 | | g/7=-4 | | (6c+5)/3=(4c+1)/2(5c)/6 | | F=5-2x | | 4+m=20 | | 2x^2+24x+90=0 | | 17x+4=−13. | | 21=7.n | | 5x+27=12x-26 | | x12+15=x2+165 | | 4x+25=7x-2 | | 400+0.03w=700 | | X-15+x+x/2+45=180 | | (6c-5)/3=(4c+1)/2+(5c)/6 | | -8x+3-2x=3-6-4x | | –6(v–1)=48 |

Equations solver categories