75=2x(2x+(x-5))+2x+(x-5)

Simple and best practice solution for 75=2x(2x+(x-5))+2x+(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 75=2x(2x+(x-5))+2x+(x-5) equation:


Simplifying
75 = 2x(2x + (x + -5)) + 2x + (x + -5)

Reorder the terms:
75 = 2x(2x + (-5 + x)) + 2x + (x + -5)

Remove parenthesis around (-5 + x)
75 = 2x(2x + -5 + x) + 2x + (x + -5)

Reorder the terms:
75 = 2x(-5 + 2x + x) + 2x + (x + -5)

Combine like terms: 2x + x = 3x
75 = 2x(-5 + 3x) + 2x + (x + -5)
75 = (-5 * 2x + 3x * 2x) + 2x + (x + -5)
75 = (-10x + 6x2) + 2x + (x + -5)

Reorder the terms:
75 = -10x + 6x2 + 2x + (-5 + x)

Remove parenthesis around (-5 + x)
75 = -10x + 6x2 + 2x + -5 + x

Reorder the terms:
75 = -5 + -10x + 2x + x + 6x2

Combine like terms: -10x + 2x = -8x
75 = -5 + -8x + x + 6x2

Combine like terms: -8x + x = -7x
75 = -5 + -7x + 6x2

Solving
75 = -5 + -7x + 6x2

Solving for variable 'x'.

Combine like terms: 75 + 5 = 80
80 + 7x + -6x2 = -5 + -7x + 6x2 + 5 + 7x + -6x2

Reorder the terms:
80 + 7x + -6x2 = -5 + 5 + -7x + 7x + 6x2 + -6x2

Combine like terms: -5 + 5 = 0
80 + 7x + -6x2 = 0 + -7x + 7x + 6x2 + -6x2
80 + 7x + -6x2 = -7x + 7x + 6x2 + -6x2

Combine like terms: -7x + 7x = 0
80 + 7x + -6x2 = 0 + 6x2 + -6x2
80 + 7x + -6x2 = 6x2 + -6x2

Combine like terms: 6x2 + -6x2 = 0
80 + 7x + -6x2 = 0

Begin completing the square.  Divide all terms by
-6 the coefficient of the squared term: 

Divide each side by '-6'.
-13.33333333 + -1.166666667x + x2 = 0

Move the constant term to the right:

Add '13.33333333' to each side of the equation.
-13.33333333 + -1.166666667x + 13.33333333 + x2 = 0 + 13.33333333

Reorder the terms:
-13.33333333 + 13.33333333 + -1.166666667x + x2 = 0 + 13.33333333

Combine like terms: -13.33333333 + 13.33333333 = 0.00000000
0.00000000 + -1.166666667x + x2 = 0 + 13.33333333
-1.166666667x + x2 = 0 + 13.33333333

Combine like terms: 0 + 13.33333333 = 13.33333333
-1.166666667x + x2 = 13.33333333

The x term is -1.166666667x.  Take half its coefficient (-0.5833333335).
Square it (0.3402777780) and add it to both sides.

Add '0.3402777780' to each side of the equation.
-1.166666667x + 0.3402777780 + x2 = 13.33333333 + 0.3402777780

Reorder the terms:
0.3402777780 + -1.166666667x + x2 = 13.33333333 + 0.3402777780

Combine like terms: 13.33333333 + 0.3402777780 = 13.673611108
0.3402777780 + -1.166666667x + x2 = 13.673611108

Factor a perfect square on the left side:
(x + -0.5833333335)(x + -0.5833333335) = 13.673611108

Calculate the square root of the right side: 3.697784622

Break this problem into two subproblems by setting 
(x + -0.5833333335) equal to 3.697784622 and -3.697784622.

Subproblem 1

x + -0.5833333335 = 3.697784622 Simplifying x + -0.5833333335 = 3.697784622 Reorder the terms: -0.5833333335 + x = 3.697784622 Solving -0.5833333335 + x = 3.697784622 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.5833333335' to each side of the equation. -0.5833333335 + 0.5833333335 + x = 3.697784622 + 0.5833333335 Combine like terms: -0.5833333335 + 0.5833333335 = 0.0000000000 0.0000000000 + x = 3.697784622 + 0.5833333335 x = 3.697784622 + 0.5833333335 Combine like terms: 3.697784622 + 0.5833333335 = 4.2811179555 x = 4.2811179555 Simplifying x = 4.2811179555

Subproblem 2

x + -0.5833333335 = -3.697784622 Simplifying x + -0.5833333335 = -3.697784622 Reorder the terms: -0.5833333335 + x = -3.697784622 Solving -0.5833333335 + x = -3.697784622 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.5833333335' to each side of the equation. -0.5833333335 + 0.5833333335 + x = -3.697784622 + 0.5833333335 Combine like terms: -0.5833333335 + 0.5833333335 = 0.0000000000 0.0000000000 + x = -3.697784622 + 0.5833333335 x = -3.697784622 + 0.5833333335 Combine like terms: -3.697784622 + 0.5833333335 = -3.1144512885 x = -3.1144512885 Simplifying x = -3.1144512885

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.2811179555, -3.1144512885}

See similar equations:

| 8(x-17)=104 | | (2x+8)-20=-(3x-8) | | -6(8-x)=72 | | y=x^4+3x^3-16x^2-48x | | 5(7+n)=-120 | | Y=2x(3x-5) | | b+a+c=42 | | 3(n-9)=-33 | | 13x+5y=10.5 | | 10-a=6 | | 4(3x+2)+5(7x-1)=10 | | 2(b+6)= | | 2(n+8)=40 | | 3a+6+a+2-2a= | | 11n+3=58 | | (e+5)x^2=20 | | 5n+2=37 | | 5h+4=3(2-h)+8h | | 3w^2+2w=56 | | 1/5x^2-3x=0 | | (4x10^-5)^2/(2x10^6)^3= | | 2/3x-2=4/5 | | Z+10=3 | | 7(4s+4)=112 | | 5(a-8)=0 | | 4-2ln(x)=5 | | 12/h=4 | | (12t-2)3= | | 4e(2x-1)=1 | | 68+b+54=72 | | 9(7x-4)=277 | | 1000+-500=100 |

Equations solver categories