73=-6x(x-7)+6(x+6)

Simple and best practice solution for 73=-6x(x-7)+6(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 73=-6x(x-7)+6(x+6) equation:



73=-6x(x-7)+6(x+6)
We move all terms to the left:
73-(-6x(x-7)+6(x+6))=0
We calculate terms in parentheses: -(-6x(x-7)+6(x+6)), so:
-6x(x-7)+6(x+6)
We multiply parentheses
-6x^2+42x+6x+36
We add all the numbers together, and all the variables
-6x^2+48x+36
Back to the equation:
-(-6x^2+48x+36)
We get rid of parentheses
6x^2-48x-36+73=0
We add all the numbers together, and all the variables
6x^2-48x+37=0
a = 6; b = -48; c = +37;
Δ = b2-4ac
Δ = -482-4·6·37
Δ = 1416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1416}=\sqrt{4*354}=\sqrt{4}*\sqrt{354}=2\sqrt{354}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-2\sqrt{354}}{2*6}=\frac{48-2\sqrt{354}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+2\sqrt{354}}{2*6}=\frac{48+2\sqrt{354}}{12} $

See similar equations:

| 20=4a+2(8) | | 4x+4(3x-7)=52 | | -30w+400=190 | | 13-9a=21-7a | | -5x+3x-1=+2x-9 | | 2x+5(6x-11)=201 | | -10p-4p=-2p+10-6p | | 1-3x-x=8 | | 5a/8+1=9/4 | | 7x+2=10x+4 | | 4x+3(4x-2)=122 | | 7x+2=3x−6 | | a+2/5=1 | | 2/3x-x=2 | | 3-4-2y=7 | | 2x+2(4x+21)=142 | | 7m/2+3=17 | | x+47=152 | | -15x+4=64 | | 0.2x-0.09=-0.03x | | x-85=275 | | -2,7+2x=4,9 | | x-26=200 | | 2x+2(3x+14)=84 | | -14-6x=22 | | x-43+x-29+2x-18=180 | | x+26=114 | | x+4x=1/4x+12 | | 10^x=0.6 | | x-13=127 | | m^2-m-6=0m | | x+x+x+x=88 |

Equations solver categories