72=(x+2)(2x+16)

Simple and best practice solution for 72=(x+2)(2x+16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 72=(x+2)(2x+16) equation:



72=(x+2)(2x+16)
We move all terms to the left:
72-((x+2)(2x+16))=0
We multiply parentheses ..
-((+2x^2+16x+4x+32))+72=0
We calculate terms in parentheses: -((+2x^2+16x+4x+32)), so:
(+2x^2+16x+4x+32)
We get rid of parentheses
2x^2+16x+4x+32
We add all the numbers together, and all the variables
2x^2+20x+32
Back to the equation:
-(2x^2+20x+32)
We get rid of parentheses
-2x^2-20x-32+72=0
We add all the numbers together, and all the variables
-2x^2-20x+40=0
a = -2; b = -20; c = +40;
Δ = b2-4ac
Δ = -202-4·(-2)·40
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-12\sqrt{5}}{2*-2}=\frac{20-12\sqrt{5}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+12\sqrt{5}}{2*-2}=\frac{20+12\sqrt{5}}{-4} $

See similar equations:

| (4x-3)^2=-5 | | 2(3x-4)=4+4x | | 110+4x+20=180 | | 4(3x+2)=3(2x-5) | | (4x-3)^2=5 | | x=376,000+.06x | | 17x=350 | | 2(b+10)=8b-4 | | 4(5n+3)=2(-4n+6) | | 4x(x+1)=48 | | -9(7x-7)=-9(1+2x) | | 3(x+2)-5(x-3)=9 | | (2-15i)-(4+5i)=0 | | 441=18n+18n | | 3(x+2)=9+3x | | -1/4=x/16 | | 4(3x-6)=3(5x+1) | | -2/3x+1/2=-2/3 | | 30=-2x=68 | | 21-2n=3(n+6)-6n | | 2(^x^2-7x+12)=1 | | 12.2=x(x^2-5) | | (X+8)=9(x+8)+6 | | 21-x=-16 | | 1+6(-3v+)=41-7v | | 2(5x-3)+1=5 | | (-x)=9(-x)+6 | | (3(3-y))/(5)=-y | | x-1/4=0.2 | | 9(8x+10)+3=-3-6(x+12) | | X2+16x-63=0 | | F(-x)=9(-x)+6 |

Equations solver categories