72=(3x-1)(2x+2)

Simple and best practice solution for 72=(3x-1)(2x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 72=(3x-1)(2x+2) equation:



72=(3x-1)(2x+2)
We move all terms to the left:
72-((3x-1)(2x+2))=0
We multiply parentheses ..
-((+6x^2+6x-2x-2))+72=0
We calculate terms in parentheses: -((+6x^2+6x-2x-2)), so:
(+6x^2+6x-2x-2)
We get rid of parentheses
6x^2+6x-2x-2
We add all the numbers together, and all the variables
6x^2+4x-2
Back to the equation:
-(6x^2+4x-2)
We get rid of parentheses
-6x^2-4x+2+72=0
We add all the numbers together, and all the variables
-6x^2-4x+74=0
a = -6; b = -4; c = +74;
Δ = b2-4ac
Δ = -42-4·(-6)·74
Δ = 1792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1792}=\sqrt{256*7}=\sqrt{256}*\sqrt{7}=16\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-16\sqrt{7}}{2*-6}=\frac{4-16\sqrt{7}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+16\sqrt{7}}{2*-6}=\frac{4+16\sqrt{7}}{-12} $

See similar equations:

| 5.9x-10.3=36.9 | | 75=5x+6 | | −5c+6=−4 | | 4-9•x=176 | | 15-3b=0.75 | | 5x-5+2×+10=180 | | 6x+5=5(x-1) | | Y=3x;20 | | 3x(2x)1=25 | | 4x+6=3(x+2) | | 3h(2)=17 | | 5x+16+6x+5+7x-3=360 | | 3/x^-4=100 | | x/7-8=24 | | 3x*3=5x*2+2x | | 11-4x=6x-1 | | 16x^2-33x+10=0 | | 4(t+8)=8t-4t | | 5x^2-50x-20=0 | | 8=2x^2+7x-7 | | x+67+49+x=180 | | 9x-7=(2x-5)+5x | | -35/40x-8/40x-3/40x=-60 | | N+2=6.n | | 10x+20=3x+19 | | 3^x=350 | | 6^x=118 | | 170/t=85/100 | | 8p+3=9(-9+5)-10(9-9p) | | -5+3g=17 | | x+.1x=40 | | -7+x=-15 |

Equations solver categories