If it's not what You are looking for type in the equation solver your own equation and let us solve it.
720=(20+2x)(16+2x)
We move all terms to the left:
720-((20+2x)(16+2x))=0
We add all the numbers together, and all the variables
-((2x+20)(2x+16))+720=0
We multiply parentheses ..
-((+4x^2+32x+40x+320))+720=0
We calculate terms in parentheses: -((+4x^2+32x+40x+320)), so:We get rid of parentheses
(+4x^2+32x+40x+320)
We get rid of parentheses
4x^2+32x+40x+320
We add all the numbers together, and all the variables
4x^2+72x+320
Back to the equation:
-(4x^2+72x+320)
-4x^2-72x-320+720=0
We add all the numbers together, and all the variables
-4x^2-72x+400=0
a = -4; b = -72; c = +400;
Δ = b2-4ac
Δ = -722-4·(-4)·400
Δ = 11584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11584}=\sqrt{64*181}=\sqrt{64}*\sqrt{181}=8\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{181}}{2*-4}=\frac{72-8\sqrt{181}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{181}}{2*-4}=\frac{72+8\sqrt{181}}{-8} $
| 10j−8=8−6j | | -4w=10-5w | | -2y−3=-y | | 2b+9b=11b+7 | | 24+64a+6=-38-4a | | -6+3w=4w | | 6c−4c=6 | | 6.5x-7.2=51.3 | | X+(x-16)=36 | | g/100=6 | | X+(x-2)=36 | | m/4+17=19 | | 2x+3-5x=x+5 | | r2− 2= 1 | | 9+2b=15 | | 14+3x=(2/6) | | 3v=4v-10 | | -6(c+36)=-60 | | -7b=-2-9b | | 2n-(-12)=16 | | 10+r=-4r-10 | | -1+3w=17 | | 3y-5=13+y | | -5n+4=-6n | | c=8-3c | | x+1/3=2-(x+4)/4 | | -6z-6=-3z | | q/9+-3=-5 | | f-2+ 12= 9 | | 20-6+4k=2-2 | | q/4-15=-14 | | 40+3x=160 |