72/x+18=x+18/x

Simple and best practice solution for 72/x+18=x+18/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 72/x+18=x+18/x equation:



72/x+18=x+18/x
We move all terms to the left:
72/x+18-(x+18/x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
72/x-(+x+18/x)+18=0
We get rid of parentheses
72/x-x-18/x+18=0
We multiply all the terms by the denominator
-x*x+18*x+72-18=0
We add all the numbers together, and all the variables
18x-x*x+54=0
Wy multiply elements
-1x^2+18x+54=0
a = -1; b = 18; c = +54;
Δ = b2-4ac
Δ = 182-4·(-1)·54
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{15}}{2*-1}=\frac{-18-6\sqrt{15}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{15}}{2*-1}=\frac{-18+6\sqrt{15}}{-2} $

See similar equations:

| x^2+324x=72x | | 6(4x-5=6 | | Y=x^2+19x-36 | | 3.02=(0.001-x)/x | | 0=66+2w^2-W | | 3m^2-60m-99=0 | | 3/2(w+2)+1/w+2=-4 | | x+43=102 | | 3x+9+5x-5=90 | | 5y+3+3y+8=43 | | 2x-10+X+40+(180-2x+50)=180 | | 5x-10=4(x=1) | | Y-2000/y=-10 | | 55+(3x-7)+(x+20)=0 | | 0.2x+4.8=65 | | 3x-3=2x-27 | | (x/3)+((4x+8/8)=((x-5/6)-((3-2x/3) | | x^2-2x=104 | | V=x(11-2x)(8.5-2x)x | | (15+x)/4=4 | | 10^(-2x)-x+1=0 | | 7^2x-9=49 | | 7(2x+3=63 | | (x/4)+(6/7)(6X+7)=610 | | 2(2p+3)=7 | | 39+4=39-2a | | 77x*50=120 | | b-12b+20=0 | | 180=10*2^t | | R=8(b+1) | | (x-4)^2+(3x-2)^2=10x^2 | | (x^2-3)^2-4=0 |

Equations solver categories