700=(3.9-0.1x)(120+20x)

Simple and best practice solution for 700=(3.9-0.1x)(120+20x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 700=(3.9-0.1x)(120+20x) equation:



700=(3.9-0.1x)(120+20x)
We move all terms to the left:
700-((3.9-0.1x)(120+20x))=0
We add all the numbers together, and all the variables
-((-0.1x+3.9)(20x+120))+700=0
We multiply parentheses ..
-((+0x^2+0x+78x+468))+700=0
We calculate terms in parentheses: -((+0x^2+0x+78x+468)), so:
(+0x^2+0x+78x+468)
We get rid of parentheses
0x^2+0x+78x+468
We add all the numbers together, and all the variables
x^2+79x+468
Back to the equation:
-(x^2+79x+468)
We get rid of parentheses
-x^2-79x-468+700=0
We add all the numbers together, and all the variables
-1x^2-79x+232=0
a = -1; b = -79; c = +232;
Δ = b2-4ac
Δ = -792-4·(-1)·232
Δ = 7169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-\sqrt{7169}}{2*-1}=\frac{79-\sqrt{7169}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+\sqrt{7169}}{2*-1}=\frac{79+\sqrt{7169}}{-2} $

See similar equations:

| (x-1)+9=3x-6 | | 3x-10x=-210 | | 9x-210=-× | | 3x+42=5x-22 | | 4(4x-4)-x=62 | | -7x=-45.5 | | X+2+90=3x | | 0.125=(1/2)^24/x | | | | | | | | | | 3x+13=x+2 | | 5x+13=x+6 | | X+5(1-x)=-135 | | x+2/18=2/9+x-1/2 | | ​ 1/3+a=5/4 | | (m-7)(m=3) | | -2(2c-4)=1/3(-13c+24 | | 2x^2+54x=180 | | 3(x^2-4)=2x(x+2) | | 2x-6=44-3x | | 10+x/5=-20 | | 42+.2x=98 | | -5(x-1)-3x=6-(4x-3) | | X-119=8x/9 | | 3^4x-5=(1/27)^2X+10 | | 6x+22=2x+4 | | Z+8=5z-4 | | 2.2(11.5r-4.1)=18.3 | | x-4/x-4=2/x-1 | | 2x=20=1x=4 |

Equations solver categories