If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/9k-2/5=8-8/7k
We move all terms to the left:
7/9k-2/5-(8-8/7k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
7/9k-(-8/7k+8)-2/5=0
We get rid of parentheses
7/9k+8/7k-8-2/5=0
We calculate fractions
(-882k^2)/1575k^2+1225k/1575k^2+1800k/1575k^2-8=0
We multiply all the terms by the denominator
(-882k^2)+1225k+1800k-8*1575k^2=0
We add all the numbers together, and all the variables
(-882k^2)+3025k-8*1575k^2=0
Wy multiply elements
(-882k^2)-12600k^2+3025k=0
We get rid of parentheses
-882k^2-12600k^2+3025k=0
We add all the numbers together, and all the variables
-13482k^2+3025k=0
a = -13482; b = 3025; c = 0;
Δ = b2-4ac
Δ = 30252-4·(-13482)·0
Δ = 9150625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9150625}=3025$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3025)-3025}{2*-13482}=\frac{-6050}{-26964} =3025/13482 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3025)+3025}{2*-13482}=\frac{0}{-26964} =0 $
| 17.50=3.50c | | -5m+10=m-25 | | 3x-x=4x-1 | | 10k-1=9k-43 | | 3a+6=5a-12 | | -8x+8+3(x-2)=-3x+2 | | 20=-2z | | 4/5x+8-3/10x-20=6 | | 6c+3=6-12 | | 3x+3x^2-168=0 | | 8(z-5)=15 | | 2x-3(2x-2)=4(x-6) | | 5-4x=1-5x+8 | | 0(h-5)+8=17 | | 45-22=x | | x÷÷7=-8 | | 8x-2=12x30 | | -1-v=-3 | | x+6+x+6=40 | | 3/11x+8/7=1/10-8/11x+1/10 | | -3(c+(-8)-4c=60 | | 11+5k=3k-3 | | 3x^2+13x-52=0 | | 18a-3(a+5)=5(a+9) | | 2x^2-19=9 | | 17=x-19 | | 3y+17=5y-12 | | 4/3-2z=1 | | -8-z=-13 | | 5(2+2x)-2=48 | | −8(−8x+8)=64x−64 | | 2c^2-19=9 |