7/8z-4=-15/16z+1

Simple and best practice solution for 7/8z-4=-15/16z+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8z-4=-15/16z+1 equation:



7/8z-4=-15/16z+1
We move all terms to the left:
7/8z-4-(-15/16z+1)=0
Domain of the equation: 8z!=0
z!=0/8
z!=0
z∈R
Domain of the equation: 16z+1)!=0
z∈R
We get rid of parentheses
7/8z+15/16z-1-4=0
We calculate fractions
112z/128z^2+120z/128z^2-1-4=0
We add all the numbers together, and all the variables
112z/128z^2+120z/128z^2-5=0
We multiply all the terms by the denominator
112z+120z-5*128z^2=0
We add all the numbers together, and all the variables
232z-5*128z^2=0
Wy multiply elements
-640z^2+232z=0
a = -640; b = 232; c = 0;
Δ = b2-4ac
Δ = 2322-4·(-640)·0
Δ = 53824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{53824}=232$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(232)-232}{2*-640}=\frac{-464}{-1280} =29/80 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(232)+232}{2*-640}=\frac{0}{-1280} =0 $

See similar equations:

| 6t^2+33t-12=0 | | -(x+3)+2(x+7)=-20 | | -10+16=7y+5y | | -7+5r=3(2r-1) | | 100/x=10/5 | | 35=4t-7 | | 5x+2-x=3(x-7) | | 7(1-4n)=-19-2n | | 15/6=100/x | | 3/4y=2/3 | | -42=7c | | 2^5x-6=2^2x-6 | | -5-2(-6-m)=-7-5m | | x²-8x+5=0 | | 4x-8=-4x+16 | | 181-u=286 | | Y-8x-5=0 | | 5u+9=51 | | 5x^2-15+4x^2-2x=180 | | 24x+8+2x=3(10x-3) | | -1=8y | | -2/5t+1=3/10t+-3 | | -3x=-3x-8(x-8) | | (0.1+a)•1=5.1 | | 4/3w-3/4=-7/4w+5 | | 5d+7.75=4+2.25d | | 1+n=2(n+4) | | 138-u=233 | | 4/3v-1/v=v+2/2v^2 | | 2x+6=-30-5x | | 3x/7=41 | | -8((8x-26)/6)+3x=-19 |

Equations solver categories