7/8x-1=1/4x+4

Simple and best practice solution for 7/8x-1=1/4x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x-1=1/4x+4 equation:



7/8x-1=1/4x+4
We move all terms to the left:
7/8x-1-(1/4x+4)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 4x+4)!=0
x∈R
We get rid of parentheses
7/8x-1/4x-4-1=0
We calculate fractions
28x/32x^2+(-8x)/32x^2-4-1=0
We add all the numbers together, and all the variables
28x/32x^2+(-8x)/32x^2-5=0
We multiply all the terms by the denominator
28x+(-8x)-5*32x^2=0
Wy multiply elements
-160x^2+28x+(-8x)=0
We get rid of parentheses
-160x^2+28x-8x=0
We add all the numbers together, and all the variables
-160x^2+20x=0
a = -160; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-160)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-160}=\frac{-40}{-320} =1/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-160}=\frac{0}{-320} =0 $

See similar equations:

| -2(4x-6)=36 | | 7x+2=8x-12 | | 10(w+3)=30 | | X+84=x+75=43 | | 11r/15=-44 | | | | 3x-5(x+2)=4 | | 1/2c-4=2/3(-2) | | 4/2x-13=1.5 | | 9/(15x)+1/5=2/5 | | 3x-5x+10=4 | | 4=2r-6-2 | | (5-z)(4z-3)=0 | | 5x-15=20= | | 4^(2x+3)=32 | | 6/8=2x-13/4 | | 8+5x=4(x-2)+5 | | -2c+1=7c-8 | | 2(3h+4)=32 | | 4x-2.5=27.004 | | 10(x4)=50 | | p×3=18 | | 2x-45=51 | | 21=7(r-88) | | 5r+2=13 | | (g+5+2)= | | 3h-21=21 | | 9(-6-5s)s=6 | | 7b+2=4b-7 | | y=7E-06*0,29+0,0157 | | 10.4=4c | | 2x+9+x+6+2x-10=100 |

Equations solver categories