7/8x-1=-15/16x+5

Simple and best practice solution for 7/8x-1=-15/16x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x-1=-15/16x+5 equation:



7/8x-1=-15/16x+5
We move all terms to the left:
7/8x-1-(-15/16x+5)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 16x+5)!=0
x∈R
We get rid of parentheses
7/8x+15/16x-5-1=0
We calculate fractions
112x/128x^2+120x/128x^2-5-1=0
We add all the numbers together, and all the variables
112x/128x^2+120x/128x^2-6=0
We multiply all the terms by the denominator
112x+120x-6*128x^2=0
We add all the numbers together, and all the variables
232x-6*128x^2=0
Wy multiply elements
-768x^2+232x=0
a = -768; b = 232; c = 0;
Δ = b2-4ac
Δ = 2322-4·(-768)·0
Δ = 53824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{53824}=232$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(232)-232}{2*-768}=\frac{-464}{-1536} =29/96 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(232)+232}{2*-768}=\frac{0}{-1536} =0 $

See similar equations:

| 5w^2-200=0 | | f/3+4=1 | | x–7=-1 | | u/2-2=1.16 | | 2x14/3= | | x+61+x+21+x+23=180 | | 6n^2=5n+4 | | 13n-206=5n-6 | | 4c-(-7.4)=18.6 | | 1.2x15=15 | | 4/8c-10=20 | | 4c−-7.4=18.6 | | x+5=1/2x+4 | | b/2-5=-2.4 | | 2x-61+x-11+3x=360 | | 4-78x=39x+10 | | 3x+470=720 | | 1/(x^2-2x+1)=0 | | 2x-12=-42 | | (4y-8)=79+y | | 4/7=-5/x | | 4×(x+1)=2x+10 | | (3x+12)*5+x=68 | | (2x-2.5)(x^2-36)=0 | | n-10n=585 | | x–5=25 | | 6-2u=9 | | 2/((1-2x)^2)=0 | | 6y=(2y+26) | | 10+4x=66 | | 7^2t=-14 | | 11x-5=-38 |

Equations solver categories