7/8x-1/2=3/16x-5

Simple and best practice solution for 7/8x-1/2=3/16x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x-1/2=3/16x-5 equation:



7/8x-1/2=3/16x-5
We move all terms to the left:
7/8x-1/2-(3/16x-5)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 16x-5)!=0
x∈R
We get rid of parentheses
7/8x-3/16x+5-1/2=0
We calculate fractions
(-128x^2)/512x^2+448x/512x^2+(-96x)/512x^2+5=0
We multiply all the terms by the denominator
(-128x^2)+448x+(-96x)+5*512x^2=0
Wy multiply elements
(-128x^2)+2560x^2+448x+(-96x)=0
We get rid of parentheses
-128x^2+2560x^2+448x-96x=0
We add all the numbers together, and all the variables
2432x^2+352x=0
a = 2432; b = 352; c = 0;
Δ = b2-4ac
Δ = 3522-4·2432·0
Δ = 123904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{123904}=352$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(352)-352}{2*2432}=\frac{-704}{4864} =-11/76 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(352)+352}{2*2432}=\frac{0}{4864} =0 $

See similar equations:

| x+72+68=180 | | 8n-6=-9n+111 | | 3y+18=5y+12 | | .43x=1.5523 | | A=(x+4)(2x-23) | | 2(x+$5.00)=$34.00 | | 19.5x+10=-0.5x+4 | | 5m+7-3m+1=2m-3 | | (x+25)/x=6 | | y=-2(7)+10 | | 6=k+0 | | 5k^2-90=410 | | x^{2}-10x+24= | | 6=k+10 | | w2+6w+9=0 | | 5.25x-17=-0.75x+31 | | 6=k=10 | | 11b-9b+b+2b-4b-1=18 | | -17y=-720 | | -24n(n+1=0 | | 3/4x-6=1/8x+4 | | 7k+63=9k+207 | | -5x-6-1=-28 | | y-12=-72 | | 10.2x=3.2x+70 | | -2(x=5)-4(5x1)-11x | | 30x+0.15=36x+10 | | 19q-18q+(-10)=-1 | | 5(x-6+8-2x=x+2(x-11 | | 30x+0.15=36x+,10 | | 2+24=4x+36 | | 50+80x=70+70x |

Equations solver categories