7/8x-1-2=3/16x+5

Simple and best practice solution for 7/8x-1-2=3/16x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x-1-2=3/16x+5 equation:



7/8x-1-2=3/16x+5
We move all terms to the left:
7/8x-1-2-(3/16x+5)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 16x+5)!=0
x∈R
We add all the numbers together, and all the variables
7/8x-(3/16x+5)-3=0
We get rid of parentheses
7/8x-3/16x-5-3=0
We calculate fractions
112x/128x^2+(-24x)/128x^2-5-3=0
We add all the numbers together, and all the variables
112x/128x^2+(-24x)/128x^2-8=0
We multiply all the terms by the denominator
112x+(-24x)-8*128x^2=0
Wy multiply elements
-1024x^2+112x+(-24x)=0
We get rid of parentheses
-1024x^2+112x-24x=0
We add all the numbers together, and all the variables
-1024x^2+88x=0
a = -1024; b = 88; c = 0;
Δ = b2-4ac
Δ = 882-4·(-1024)·0
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7744}=88$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-88}{2*-1024}=\frac{-176}{-2048} =11/128 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+88}{2*-1024}=\frac{0}{-2048} =0 $

See similar equations:

| 2(h-10=-4 | | b+12.1=16.4 | | 8x-3(2x4)=3(3x-6) | | -42x-2=8 | | 45=33x+3 | | 3n-9(N+5)=56 | | 2/3m=1/3(2m-12) | | 8(m-7)=92 | | 6=2(h+1) | | z2+5z−36=0 | | 7x-161=14 | | 9(x+)=10x+10 | | 113=3(6x+6)+5 | | 5x+35+x+45=180 | | 5(6+7x)=380 | | 19n-15n-4=-20 | | 33x+3=45 | | 10n+7-3n=8n+5 | | 6(x-26)=16(-18-2x) | | 5x+35=x+45 | | -17=-11-x | | 15.95=3.19w | | -17=-16+n | | 4n+7+n=17 | | 4.9=0.7n | | (x-4)(x+5)=90 | | 203-6y=4y-37 | | -10+z/1.5=-5 | | (3x+18)=(6x-16) | | 4=p+17 | | x+111=80 | | 6=r+16 |

Equations solver categories