7/8n-23/4=1/2n+3

Simple and best practice solution for 7/8n-23/4=1/2n+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8n-23/4=1/2n+3 equation:



7/8n-23/4=1/2n+3
We move all terms to the left:
7/8n-23/4-(1/2n+3)=0
Domain of the equation: 8n!=0
n!=0/8
n!=0
n∈R
Domain of the equation: 2n+3)!=0
n∈R
We get rid of parentheses
7/8n-1/2n-3-23/4=0
We calculate fractions
(-736n^2)/256n^2+224n/256n^2+(-128n)/256n^2-3=0
We multiply all the terms by the denominator
(-736n^2)+224n+(-128n)-3*256n^2=0
Wy multiply elements
(-736n^2)-768n^2+224n+(-128n)=0
We get rid of parentheses
-736n^2-768n^2+224n-128n=0
We add all the numbers together, and all the variables
-1504n^2+96n=0
a = -1504; b = 96; c = 0;
Δ = b2-4ac
Δ = 962-4·(-1504)·0
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9216}=96$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-96}{2*-1504}=\frac{-192}{-3008} =3/47 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+96}{2*-1504}=\frac{0}{-3008} =0 $

See similar equations:

| 24x2+25x−47=(−8x−3)(x−2)−53 | | x-59=73-10x | | 13x+2=29x-52 | | (x-1)(x+7)=(x+7)(x-3) | | 5(x+9)=8(x-1) | | X+(5x-4)=32 | | 3x-1+77=360 | | 112+12m=268 | | 5(-5-4m)+3=-122 | | 3x-1+77=180 | | .5p-3=9 | | -4x^2-x+75=0 | | 9x-174=-x+96 | | 4c-8c=124 | | -x²+4x-7=0 | | 25n-70=280 | | 6^x=78 | | 3x/4-7/3=4x/5-5/4 | | -21=-7/8u | | -1/3x5=1/2x+6 | | 5m+6.25=53.75 | | 2/3x+2=1/4x+7 | | -10=-b.4 | | -16+2x=x+8 | | 8+x=7x-2 | | -12=2+5v=2v | | 5/6x=(6-2)^1/2 | | x^-12x+36=25 | | (15+.25)=(20+.05y) | | n7=20 | | 2(x+2)=4x+3-2x+5 | | -6x-82=105+5x |

Equations solver categories