7/5x+10=2/3x+8

Simple and best practice solution for 7/5x+10=2/3x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/5x+10=2/3x+8 equation:



7/5x+10=2/3x+8
We move all terms to the left:
7/5x+10-(2/3x+8)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x+8)!=0
x∈R
We get rid of parentheses
7/5x-2/3x-8+10=0
We calculate fractions
21x/15x^2+(-10x)/15x^2-8+10=0
We add all the numbers together, and all the variables
21x/15x^2+(-10x)/15x^2+2=0
We multiply all the terms by the denominator
21x+(-10x)+2*15x^2=0
Wy multiply elements
30x^2+21x+(-10x)=0
We get rid of parentheses
30x^2+21x-10x=0
We add all the numbers together, and all the variables
30x^2+11x=0
a = 30; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·30·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*30}=\frac{-22}{60} =-11/30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*30}=\frac{0}{60} =0 $

See similar equations:

| -x/8+2=-5/2 | | 7(x-1)=-3(2x-4) | | 7x+10=-2x-5 | | 3x+1850+2=4x-1x+1.852 | | 2x+9-4x=-45 | | -12=-8+3x+23 | | -12x-45-10+28=189 | | -(7m+3)=8(1-m) | | 55+5x-20=160 | | -45=-18x+99+30x | | y-y=10 | | 6x+8=6+4x | | 4=(2x)^2/((0.24-x)*(0.32-3x)^3 | | (7x-9)+2x+90=180 | | 18.6(2x+5)=10-8x | | 9x^2+16x^2=100 | | y/0.28=7.6y= | | 0.16g=4.96g= | | -13=4p+11 | | 11b-33=-22 | | 13y-39=-26 | | 28*330=2*(28-x)*300 | | 4620=8400-300x | | 9240=8400-300x | | 224=420-15x | | 28=16x/2 | | -36=12+4x | | 13x+21=6x+14 | | (2*x)-(x/3)=14 | | 9(2.8a-13)=18.4a-11.7+6.8a | | -2(j-11+3)j+4=8 | | 1.66667x=-2 |

Equations solver categories