7/4z-3=5/9z

Simple and best practice solution for 7/4z-3=5/9z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/4z-3=5/9z equation:



7/4z-3=5/9z
We move all terms to the left:
7/4z-3-(5/9z)=0
Domain of the equation: 4z!=0
z!=0/4
z!=0
z∈R
Domain of the equation: 9z)!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
7/4z-(+5/9z)-3=0
We get rid of parentheses
7/4z-5/9z-3=0
We calculate fractions
63z/36z^2+(-20z)/36z^2-3=0
We multiply all the terms by the denominator
63z+(-20z)-3*36z^2=0
Wy multiply elements
-108z^2+63z+(-20z)=0
We get rid of parentheses
-108z^2+63z-20z=0
We add all the numbers together, and all the variables
-108z^2+43z=0
a = -108; b = 43; c = 0;
Δ = b2-4ac
Δ = 432-4·(-108)·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1849}=43$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-43}{2*-108}=\frac{-86}{-216} =43/108 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+43}{2*-108}=\frac{0}{-216} =0 $

See similar equations:

| 0=16x-9x | | r-7.2=10.3 | | m-13=-3m+15 | | 11y=13y+18 | | 7x-(4-x)=3(4x+12)-16 | | 0.05x+0.10(4x+37000)=65350 | | 9+10-9v=-5-5v | | 9/x=1.5 | | y/2+1=6 | | 2(4x-1)=5(6+3x) | | 0.05x+0.07(4x+46000)=29290 | | 16=4(x+18) | | x3−5x+3=0.8 | | 180=2x-44 | | 2x/18=1.5/6 | | 7n-×=4 | | 80x+20*100=70x+70*100 | | 80x+30*100=70x+70*100 | | 1.5/(4x−1)=0.4/(x+4) | | 4x(2x+3)=12 | | 3n+6=n+8-2 | | 8-48k=-49k-7 | | (5v-4)/10=0.8 | | 90x+30(60)=80x+4800 | | 200=80+21w | | 5/6=r-1/6 | | 3(5+a)=0.25(28+12a) | | 28-7m=42-42m | | 6-5x=15x+4 | | ^3x+54+6=10 | | -4r+10-3r=-5r-6 | | 4x-10=18+-24x |

Equations solver categories