7/4x+3/8=3+7/12x

Simple and best practice solution for 7/4x+3/8=3+7/12x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/4x+3/8=3+7/12x equation:



7/4x+3/8=3+7/12x
We move all terms to the left:
7/4x+3/8-(3+7/12x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 12x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/4x-(7/12x+3)+3/8=0
We get rid of parentheses
7/4x-7/12x-3+3/8=0
We calculate fractions
144x^2/3072x^2+5376x/3072x^2+(-1792x)/3072x^2-3=0
We multiply all the terms by the denominator
144x^2+5376x+(-1792x)-3*3072x^2=0
Wy multiply elements
144x^2-9216x^2+5376x+(-1792x)=0
We get rid of parentheses
144x^2-9216x^2+5376x-1792x=0
We add all the numbers together, and all the variables
-9072x^2+3584x=0
a = -9072; b = 3584; c = 0;
Δ = b2-4ac
Δ = 35842-4·(-9072)·0
Δ = 12845056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12845056}=3584$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3584)-3584}{2*-9072}=\frac{-7168}{-18144} =32/81 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3584)+3584}{2*-9072}=\frac{0}{-18144} =0 $

See similar equations:

| 10x/4=12 | | 4m+6+3m=48 | | 4(4y-3)+15=-5-(6y+4) | | -2(n+3)=13. | | Y=6x3-24x2 | | 10x^2+2x=50 | | -20x-3=15x-19 | | 18=7y+y | | 51x=35 | | 4x^=3x^+3x= | | 55a=6a+7 | | 2(3y)=0 | | 9x+4/2=2x-7/4 | | 8x-2(x+3)=4 | | 7-2x=x-20 | | 9x-18=8-4x | | 12x+55=199 | | -9/x=3 | | j/9-13=-13 | | 2/5f=4/5=8/5 | | 5(6x+2)-7(3x-5-72=0 | | 2z-8=4z+3 | | 7a+2=3a-5 | | x-x(.20)=41 | | x+.12x=672 | | 3^x+1=55 | | 5+1y/2=11 | | -5x=31/2 | | -5a-3=-28 | | Y=4z+9 | | 3+x-3=3+3 | | 9x+2+8x+1=180 |

Equations solver categories