7/3x-2/3=-6/5x-1

Simple and best practice solution for 7/3x-2/3=-6/5x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x-2/3=-6/5x-1 equation:



7/3x-2/3=-6/5x-1
We move all terms to the left:
7/3x-2/3-(-6/5x-1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x-1)!=0
x∈R
We get rid of parentheses
7/3x+6/5x+1-2/3=0
We calculate fractions
35x/135x^2+162x/135x^2+(-10x)/135x^2+1=0
We multiply all the terms by the denominator
35x+162x+(-10x)+1*135x^2=0
We add all the numbers together, and all the variables
197x+(-10x)+1*135x^2=0
Wy multiply elements
135x^2+197x+(-10x)=0
We get rid of parentheses
135x^2+197x-10x=0
We add all the numbers together, and all the variables
135x^2+187x=0
a = 135; b = 187; c = 0;
Δ = b2-4ac
Δ = 1872-4·135·0
Δ = 34969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{34969}=187$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(187)-187}{2*135}=\frac{-374}{270} =-1+52/135 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(187)+187}{2*135}=\frac{0}{270} =0 $

See similar equations:

| 6/x+5=4/x-1 | | (-x^2+6x)/(x^2-x+3)^2=0 | | 12(x-5)+2=8+2(x-15) | | 2v^2+7v-23=7 | | t2-5=-8 | | 3/2r=-4/5 | | 10=-16t^2+29t+3 | | (x+30)°=(2x-5)° | | 12x-42+10=16 | | 2a=9=2249 | | 3t=10.8 | | -5x+8x+1x=-20 | | -10x+50=170 | | x^2+(17/x)=0 | | 5.9g+8=1.9g+24 | | b-4+4b=32 | | 18=-8u+6(u+6) | | 4c=5c–4 | | 2.2-0.25x=-3 | | 3.3g+6=1.3g+18 | | 2x+3(-5)=10 | | 3x^2-7=180 | | -3(2+p)=-18 | | 3s+6-1s=38 | | -5+b/10=-1 | | 2(r+7)—-6=8 | | x-12=2909 | | 6.5g+10=2.5g+30 | | 1/4(5x-8)=2 | | 6.5g+10=2.5+30 | | -4+5a=-29 | | -3(c-12)+2=-20 |

Equations solver categories