7/3x+7x+7-x+3=17+4x-13

Simple and best practice solution for 7/3x+7x+7-x+3=17+4x-13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x+7x+7-x+3=17+4x-13 equation:



7/3x+7x+7-x+3=17+4x-13
We move all terms to the left:
7/3x+7x+7-x+3-(17+4x-13)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
7/3x+7x-x-(4x+4)+7+3=0
We add all the numbers together, and all the variables
6x+7/3x-(4x+4)+10=0
We get rid of parentheses
6x+7/3x-4x-4+10=0
We multiply all the terms by the denominator
6x*3x-4x*3x-4*3x+10*3x+7=0
Wy multiply elements
18x^2-12x^2-12x+30x+7=0
We add all the numbers together, and all the variables
6x^2+18x+7=0
a = 6; b = 18; c = +7;
Δ = b2-4ac
Δ = 182-4·6·7
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{39}}{2*6}=\frac{-18-2\sqrt{39}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{39}}{2*6}=\frac{-18+2\sqrt{39}}{12} $

See similar equations:

| 8/3x+4=12 | | 3r+28=-5(r-4) | | 120+4r=904 | | 3r+38=-5(r-4) | | -3r+38=-5(r/4) | | s/12-9=10 | | 1=z/9-3 | | -3r+28=-6(r-4) | | 15x-6=5x-24 | | (x-2)/(x-7)=5/10 | | 3x+6=4x÷6 | | 3=u/19-18 | | 3=u/19−8 | | 3s+230=926 | | 2*(4x+5)=3*(2+3x) | | 20−3u=14 | | 73=28+3y | | Y=12^2-9x+4 | | (1+y)(5y-2)=0 | | x*1.8=2.02 | | m/2+34=42 | | d/9+10=13 | | x+(x*1.8)=2.02 | | q/2+15=22 | | 79-j=70 | | -1=9x-64 | | 4/5(3x-3)=22/5x-22/5 | | 19x-24=60 | | 4n+14=86 | | 11z-10=22 | | 10x+2x=16-3x | | 9x+9x=16-4 |

Equations solver categories