If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/3x+-3/2+5/2x=31/18
We move all terms to the left:
7/3x+-3/2+5/2x-(31/18)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
7/3x+5/2x+-3/2-(+31/18)=0
We add all the numbers together, and all the variables
7/3x+5/2x-3/2-(+31/18)=0
We get rid of parentheses
7/3x+5/2x-3/2-31/18=0
We calculate fractions
(-744x^2)/432x^2+1008x/432x^2+270x/432x^2+(-162x)/432x^2=0
We multiply all the terms by the denominator
(-744x^2)+1008x+270x+(-162x)=0
We add all the numbers together, and all the variables
(-744x^2)+1278x+(-162x)=0
We get rid of parentheses
-744x^2+1278x-162x=0
We add all the numbers together, and all the variables
-744x^2+1116x=0
a = -744; b = 1116; c = 0;
Δ = b2-4ac
Δ = 11162-4·(-744)·0
Δ = 1245456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1245456}=1116$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1116)-1116}{2*-744}=\frac{-2232}{-1488} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1116)+1116}{2*-744}=\frac{0}{-1488} =0 $
| y-9=9/10 | | c/19+20=20 | | l/3+5=9 | | -4(1r+9)=-43 | | -2(4k+13)=5k | | (x+25)°=55° | | 12x+3=4x=19 | | 6-2(x+4)=8-(x-7) | | 4-2(7-2x)=18 | | 7(w-6)=-21 | | 10(x-1)-2x=30 | | 2x-6+2x-6=24 | | -7(x+7)=7x+1 | | (2x)+(3x+3)+187=360 | | -1-7n-7n=7(2+n)+3(1-5n) | | 11x+7=93 | | 4/5y+15=-5 | | 10x-3(x-2)=4+7x-19 | | 1500=-100(2*x)+19 | | 75h+425=8000 | | N=-5+5n | | 3x=5x-7.5 | | 4h+2h-9=27 | | 3k-5=22 | | -6y–3=3–6y | | -11=y/8-5 | | 50+x+x+95=125 | | 3(5x-4)=30 | | 3(3y-6)=24 | | 34=14+10x | | 2x-3=2x+8/2 | | x+4=3×+2 |