7/3u-2/5=-2/5u+2

Simple and best practice solution for 7/3u-2/5=-2/5u+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3u-2/5=-2/5u+2 equation:



7/3u-2/5=-2/5u+2
We move all terms to the left:
7/3u-2/5-(-2/5u+2)=0
Domain of the equation: 3u!=0
u!=0/3
u!=0
u∈R
Domain of the equation: 5u+2)!=0
u∈R
We get rid of parentheses
7/3u+2/5u-2-2/5=0
We calculate fractions
875u/375u^2+6u/375u^2+(-6u)/375u^2-2=0
We multiply all the terms by the denominator
875u+6u+(-6u)-2*375u^2=0
We add all the numbers together, and all the variables
881u+(-6u)-2*375u^2=0
Wy multiply elements
-750u^2+881u+(-6u)=0
We get rid of parentheses
-750u^2+881u-6u=0
We add all the numbers together, and all the variables
-750u^2+875u=0
a = -750; b = 875; c = 0;
Δ = b2-4ac
Δ = 8752-4·(-750)·0
Δ = 765625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{765625}=875$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(875)-875}{2*-750}=\frac{-1750}{-1500} =1+1/6 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(875)+875}{2*-750}=\frac{0}{-1500} =0 $

See similar equations:

| 50c+125=375 | | 13+2x=3x–14+2x | | 6+5n=7n+6 | | (10/2^8)x-5=-0.3 | | 7x-22=3 | | 20h+60=140 | | 2x+5+3x+20=120 | | 1/9=-8/5u-1/3 | | 6.2=-6.6+4u | | 2(m-2)=12* | | 5-l=10 | | 9x÷3-5=4x÷6+7 | | .05x-x=42 | | 180=36-28-y | | 180=3x-13+x-3 | | 4(x-17)+7=19 | | 1/7+w=48 | | 3.2=28.8-2w | | 180=8x+x+x | | -3x+8=(-10) | | v/8+7=13.48 | | 0,8660x=24 | | -1.1=u/7+16.4 | | 4x+4×(x-1)=40 | | 2(x-1)=4x+2-2(-8x-4) | | u+17=22 | | 0,8660x=12 | | 180=58+42+x | | -3(5x-4)+9x=4+2(2x-5) | | r+6=24 | | x/3x-2=10 | | 6x+16=8x+5 |

Equations solver categories