7/3n-3=5-8n+12

Simple and best practice solution for 7/3n-3=5-8n+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3n-3=5-8n+12 equation:



7/3n-3=5-8n+12
We move all terms to the left:
7/3n-3-(5-8n+12)=0
Domain of the equation: 3n!=0
n!=0/3
n!=0
n∈R
We add all the numbers together, and all the variables
7/3n-(-8n+17)-3=0
We get rid of parentheses
7/3n+8n-17-3=0
We multiply all the terms by the denominator
8n*3n-17*3n-3*3n+7=0
Wy multiply elements
24n^2-51n-9n+7=0
We add all the numbers together, and all the variables
24n^2-60n+7=0
a = 24; b = -60; c = +7;
Δ = b2-4ac
Δ = -602-4·24·7
Δ = 2928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2928}=\sqrt{16*183}=\sqrt{16}*\sqrt{183}=4\sqrt{183}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{183}}{2*24}=\frac{60-4\sqrt{183}}{48} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{183}}{2*24}=\frac{60+4\sqrt{183}}{48} $

See similar equations:

| 15x+8x+9=12x+6-12 | | y-6.6=4.11 | | x-3.33=5.96 | | G(x)=x-x^2-20x;x+4 | | 38.58=8g+6.2 | | -9p-6(5-3p)=5(p-4)-2 | | 4−3b=13 | | -4(x+3)+57=-38 | | k/3+2=0 | | 1/2x+3/5=2/8x+9 | | 50=-x/8 | | 4x+7=(2)2x+4 | | q/4+-3=0 | | 1/2(7x+13)=180 | | 1/2(7x+13)=0 | | 3^(4x-15)=243 | | 3x+6=15x+9 | | 2x+8-4x=16 | | 2x²+16x+32=0 | | x+x*5+2=80 | | 0=x^2+40x+6000 | | X+x+2x-3+2x-3=24 | | 15−-7c=-13 | | 5y-21=90 | | 3=x/3-17 | | 40x+x^2=6000 | | 23-10a+18=10a-11 | | 7d+10d=3 | | -1/3+3/5x=-1/2 | | 11+8g=-53 | | 9w+28=82 | | N=2/5(m+7);m |

Equations solver categories