7/2x-19=13+2x

Simple and best practice solution for 7/2x-19=13+2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2x-19=13+2x equation:



7/2x-19=13+2x
We move all terms to the left:
7/2x-19-(13+2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
7/2x-(2x+13)-19=0
We get rid of parentheses
7/2x-2x-13-19=0
We multiply all the terms by the denominator
-2x*2x-13*2x-19*2x+7=0
Wy multiply elements
-4x^2-26x-38x+7=0
We add all the numbers together, and all the variables
-4x^2-64x+7=0
a = -4; b = -64; c = +7;
Δ = b2-4ac
Δ = -642-4·(-4)·7
Δ = 4208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4208}=\sqrt{16*263}=\sqrt{16}*\sqrt{263}=4\sqrt{263}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-4\sqrt{263}}{2*-4}=\frac{64-4\sqrt{263}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+4\sqrt{263}}{2*-4}=\frac{64+4\sqrt{263}}{-8} $

See similar equations:

| 11=6w | | 32=2+n | | 6-2m-m=-18 | | 1.7x=85 | | h+20=-5(h-40) | | -39d+1)=-2(3d-9) | | 1.5r-7=5 | | 7x^2+4x-195=0 | | 42n-3=48n | | 3=46n | | 4p=p+8=2p+5 | | 1/2(2x+8)=-18 | | -2(a+3)=-0 | | -1/2x-1=1/3x-2/3 | | 30=-3(4y+2) | | 4w-8w=60 | | 2(3q-2)=3q-5 | | (65325/65000)=(1+(r/12))*(6(12)) | | -6b-7=b-154 | | 2-x=258 | | 4x+8=x-91 | | (-x-3)=(3x+5) | | 8c+9-11c=-6 | | a-(a-10)=30 | | Y+4/x-2=14 | | 3s=3(s-8) | | 3(4x-1)-2=17+10 | | –5+4a=27 | | n+54=28n | | -8(2k+3)=-8k+24 | | 1+2(-6n-5)=26-7n | | 14/84=4/x |

Equations solver categories