7/2x+5=x+15/3

Simple and best practice solution for 7/2x+5=x+15/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2x+5=x+15/3 equation:



7/2x+5=x+15/3
We move all terms to the left:
7/2x+5-(x+15/3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
7/2x-(x+5)+5=0
We get rid of parentheses
7/2x-x-5+5=0
We multiply all the terms by the denominator
-x*2x-5*2x+5*2x+7=0
Wy multiply elements
-2x^2-10x+10x+7=0
We add all the numbers together, and all the variables
-2x^2+7=0
a = -2; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-2)·7
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*-2}=\frac{0-2\sqrt{14}}{-4} =-\frac{2\sqrt{14}}{-4} =-\frac{\sqrt{14}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*-2}=\frac{0+2\sqrt{14}}{-4} =\frac{2\sqrt{14}}{-4} =\frac{\sqrt{14}}{-2} $

See similar equations:

| -4(6+4x)=-200 | | 7x−8=3x | | 11x-(x-17)=2x-(+x) | | -1/2y+4=-1/10y+2/5 | | 100+x=-86-(9.7+x) | | 3-7(8+6x)=21-5x | | 2(5n+)=8n+ | | 30=k/44 | | 6=4/w | | 1.3a+6+.7a=3 | | -55-x=33 | | 5(7+x)=50 | | 63=71-x | | 2x=4(2x)+2 | | 3(x+5)^2=9 | | x+47=60 | | 3(x-5)^2=9 | | x-47=35-x | | 17-3n=21 | | -15(y+3)+5(4y-5)=4(y-3+9 | | x+-47=35-x | | -4t=12 | | 4(x-5)=8.8 | | 14+3/4n=18 | | 3^x+8=9^2x | | 2/3(9a-21)=7a+5-2a | | 1.5+a=6 | | -8(4+2n)=-8 | | 63x=-7 | | .6(25k-7.5)+9.5=20.0 | | -40+5m=5(-7m+8) | | 28=6n-8 |

Equations solver categories