If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/2x+1/2x=10.5+9.25x
We move all terms to the left:
7/2x+1/2x-(10.5+9.25x)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
7/2x+1/2x-(9.25x+10.5)=0
We get rid of parentheses
7/2x+1/2x-9.25x-10.5=0
We multiply all the terms by the denominator
-(9.25x)*2x-(10.5)*2x+7+1=0
We add all the numbers together, and all the variables
-(+9.25x)*2x-(10.5)*2x+7+1=0
We add all the numbers together, and all the variables
-(+9.25x)*2x-(10.5)*2x+8=0
We multiply parentheses
-18x^2-21x+8=0
a = -18; b = -21; c = +8;
Δ = b2-4ac
Δ = -212-4·(-18)·8
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{113}}{2*-18}=\frac{21-3\sqrt{113}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{113}}{2*-18}=\frac{21+3\sqrt{113}}{-36} $
| 2=(x+3)/10 | | 2.4(3.2-8.9x)+1.7x=7.4 | | 4.1x+64.2=1.2-6.4x | | 1/4(5x+16/3)−2/3(3/4x+1/2)=−5 | | 44=x/100*290 | | 80+3x=20 | | 238=-6(1+5x+4 | | 6-9x=5x-9x= | | 6-9x=5x-9x | | -2d+4d=12 | | 9+18x-7=9x+98-7x | | 145=-12+x/3 | | 11x+17=55.5 | | 108/x=36/12 | | 5/4=10/n | | -40-2=2(-7a+4) | | 5(7n-2)=31-6n | | -3(4x-10)=2(3x-30) | | 4+2y-3=0 | | 4*2y-3=0 | | x+10+2x=15 | | (2x+17)+(6x+3)=180 | | 1/3z=1.2 | | 4+5x+3x+6=90 | | -7(5+7p)=-2p+12 | | 53=h+40 | | 2x-1=5x+42 | | 2700+2x=13300 | | 50+10x0+7+2=0+ | | 3y-9=69 | | x=-14+1/3 | | 2p−7=−7+2p |