7/2p-5/2p=20/3p+10

Simple and best practice solution for 7/2p-5/2p=20/3p+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2p-5/2p=20/3p+10 equation:



7/2p-5/2p=20/3p+10
We move all terms to the left:
7/2p-5/2p-(20/3p+10)=0
Domain of the equation: 2p!=0
p!=0/2
p!=0
p∈R
Domain of the equation: 3p+10)!=0
p∈R
We get rid of parentheses
7/2p-5/2p-20/3p-10=0
We calculate fractions
(-15p+7)/6p^2+(-40p)/6p^2-10=0
We multiply all the terms by the denominator
(-15p+7)+(-40p)-10*6p^2=0
Wy multiply elements
-60p^2+(-15p+7)+(-40p)=0
We get rid of parentheses
-60p^2-15p-40p+7=0
We add all the numbers together, and all the variables
-60p^2-55p+7=0
a = -60; b = -55; c = +7;
Δ = b2-4ac
Δ = -552-4·(-60)·7
Δ = 4705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-\sqrt{4705}}{2*-60}=\frac{55-\sqrt{4705}}{-120} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+\sqrt{4705}}{2*-60}=\frac{55+\sqrt{4705}}{-120} $

See similar equations:

| 208=16r | | 40w=185 | | 11x+32+7x-14=90 | | 2/3x+1=1/4x+2 | | -2-5x=-27 | | 0.5x+19.5=20 | | 2.5=x/4+2 | | 5(x-11)^2=45 | | 250x6.8=x | | 8x+2.50=3x+4.50 | | 8x-3/4=5x+3/2 | | 8x-3/4=2-5x+3/2) | | -15=11c=7 | | y/8-7=7 | | 8x-3/4=2-(5x+3/2) | | 8x-3/4=2-5x+3/2 | | 13^-x-6=7^5x | | 8x+6=14-4(2-2x) | | 110+(8s-2)=180 | | 110+(8s-2)=90 | | 3(m-2)=15m | | (b+7)+(2b+8)=90 | | 5x+1=-6=-4 | | 5x-15+3=6x+36-5x | | 2-4x/5=38 | | 0.3x-1.8=x-1.16 | | 4x+5=2x+16-7 | | 7x+14=5x-11 | | 3x-12-6x+-7=7 | | (2x5)+(3x+20=200) | | 6x+2-10x-10=8x-3 | | 4x+12-3x-3=5-2x |

Equations solver categories