If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/15*x=140
We move all terms to the left:
7/15*x-(140)=0
Domain of the equation: 15*x!=0We multiply all the terms by the denominator
x!=0/1
x!=0
x∈R
-140*15*x+7=0
Wy multiply elements
-2100x*x+7=0
Wy multiply elements
-2100x^2+7=0
a = -2100; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-2100)·7
Δ = 58800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{58800}=\sqrt{19600*3}=\sqrt{19600}*\sqrt{3}=140\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140\sqrt{3}}{2*-2100}=\frac{0-140\sqrt{3}}{-4200} =-\frac{140\sqrt{3}}{-4200} =-\frac{\sqrt{3}}{-30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140\sqrt{3}}{2*-2100}=\frac{0+140\sqrt{3}}{-4200} =\frac{140\sqrt{3}}{-4200} =\frac{\sqrt{3}}{-30} $
| -(5x-20)-x=4x+3(x-2) | | −6(8x−8)−10=−2(x+4)+184 | | 1x*2x=1120 | | −7x+10=−5x+8 | | 6x+11=-3(x+5) | | 6x+16=9x+3 | | 7-7x+2=-19 | | -3y-8=22 | | 5u-1-2u+7=6u+12-4u-3u | | a÷6+5=8 | | (a÷6)+5=8 | | .20(y-9)+0.18y=0.08y-0.3 | | -3a+6=21 | | 3x+1x+1.5x=210 | | b-17=-4 | | 304=4x^2+70x | | (2x^2)+20x=11564 | | 11c=8 | | (7y-8)^2+4=0 | | 4x(16+x)-8=156 | | (2x^2)+20x+100=11664 | | 4x+3=-8x-12 | | -2(5x-5)+5x=2x-9 | | 17=3−6(3x+7)+4x | | 6x-53=6x-1 | | 4x+4(x-5)=4 | | x-4-3=0 | | 4x+6=14x+3 | | 3(×-4)=3x-12 | | x+x+x+x+2=14 | | 25=3(w+3)-7w | | 8x+28=3x+118 |