7/10x+3/2=2+3/5x

Simple and best practice solution for 7/10x+3/2=2+3/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/10x+3/2=2+3/5x equation:



7/10x+3/2=2+3/5x
We move all terms to the left:
7/10x+3/2-(2+3/5x)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/10x-(3/5x+2)+3/2=0
We get rid of parentheses
7/10x-3/5x-2+3/2=0
We calculate fractions
750x^2/200x^2+140x/200x^2+(-120x)/200x^2-2=0
We multiply all the terms by the denominator
750x^2+140x+(-120x)-2*200x^2=0
Wy multiply elements
750x^2-400x^2+140x+(-120x)=0
We get rid of parentheses
750x^2-400x^2+140x-120x=0
We add all the numbers together, and all the variables
350x^2+20x=0
a = 350; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·350·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*350}=\frac{-40}{700} =-2/35 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*350}=\frac{0}{700} =0 $

See similar equations:

| -22=2y | | P+10q=16 | | 7y+4=3y+12 | | 2(3y-5)=4y+6 | | 3×(x+1)=2x+5 | | 7*p=-3 | | 4n-12@n=7 | | 7-p=-3 | | 9+4(x+8)=2(3x+5)+23 | | -9x+2=-9x-7(6÷2(49)+8) | | 45x+3=45 | | (-21.04)(-4.2)=a | | 35-5/6=x | | 3(4x+4)=14x+8 | | 3(n+7)=42 | | 4x-2(x-2)=-7+5x-1 | | -40=x/7 | | -8(7k-2)=408 | | 2(5c-1)-2=5c+6 | | -7x-4x+26=4x+33 | | -1/3=3/5v-2/9 | | 3(5×+2)=2(3x-6) | | -3(1+8v)=93 | | 31a-2=4a+25 | | 3x-1=5(x+2)⇒3x-1=5x+10 | | (3x-4)+x=16 | | 74=5v-16 | | 348=x+(x-48) | | 8+(x-47)=180 | | -86=3(p-2)-7p | | -3+13x=296 | | -(4x-7)=-3x-(1-8x) |

Equations solver categories