7/10w-18=5.2w

Simple and best practice solution for 7/10w-18=5.2w equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/10w-18=5.2w equation:



7/10w-18=5.2w
We move all terms to the left:
7/10w-18-(5.2w)=0
Domain of the equation: 10w!=0
w!=0/10
w!=0
w∈R
We add all the numbers together, and all the variables
7/10w-(+5.2w)-18=0
We get rid of parentheses
7/10w-5.2w-18=0
We multiply all the terms by the denominator
-(5.2w)*10w-18*10w+7=0
We add all the numbers together, and all the variables
-(+5.2w)*10w-18*10w+7=0
We multiply parentheses
-50w^2-18*10w+7=0
Wy multiply elements
-50w^2-180w+7=0
a = -50; b = -180; c = +7;
Δ = b2-4ac
Δ = -1802-4·(-50)·7
Δ = 33800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33800}=\sqrt{16900*2}=\sqrt{16900}*\sqrt{2}=130\sqrt{2}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-130\sqrt{2}}{2*-50}=\frac{180-130\sqrt{2}}{-100} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+130\sqrt{2}}{2*-50}=\frac{180+130\sqrt{2}}{-100} $

See similar equations:

| 4(2x+2)=10x+2 | | 1.89+.25x=3.80 | | 3/4=1/2+x | | 16x=241 | | 3x+2(x+1)=11 | | 32=17-3k | | 18x-12=48 | | 5+.85x=15 | | x-8=4x-1 | | 4x5=1 | | 7/2+1/7t=8 | | 63+8x=123 | | 6+15p-3=8p+23-3p | | 2+9-x/4=4 | | -2p+13=19 | | x+90=x^2 | | 0.13+0.08(y+7000)=1190 | | 7.5+x=13 | | 2^3x=8^2x+4 | | (w+6)^2=2w^2+20w+43 | | x+x/3=200 | | 24n=15 | | 18/d=144/18 | | (w+6)^2=2w^2 | | 4a=(-32) | | 40=10+x | | 15m+26=235 | | -5(3y-4)-y=-4(y-5) | | 56=x^2-3x-2 | | 5x^2-10(x-5)=0 | | 2x+x+50+x+20+x=180 | | 48=x+23 |

Equations solver categories