7/10k-2=2/5k+1

Simple and best practice solution for 7/10k-2=2/5k+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/10k-2=2/5k+1 equation:



7/10k-2=2/5k+1
We move all terms to the left:
7/10k-2-(2/5k+1)=0
Domain of the equation: 10k!=0
k!=0/10
k!=0
k∈R
Domain of the equation: 5k+1)!=0
k∈R
We get rid of parentheses
7/10k-2/5k-1-2=0
We calculate fractions
35k/50k^2+(-20k)/50k^2-1-2=0
We add all the numbers together, and all the variables
35k/50k^2+(-20k)/50k^2-3=0
We multiply all the terms by the denominator
35k+(-20k)-3*50k^2=0
Wy multiply elements
-150k^2+35k+(-20k)=0
We get rid of parentheses
-150k^2+35k-20k=0
We add all the numbers together, and all the variables
-150k^2+15k=0
a = -150; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·(-150)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*-150}=\frac{-30}{-300} =1/10 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*-150}=\frac{0}{-300} =0 $

See similar equations:

| 9x+21x-7=6(5x+5) | | -4(4x-9)+8=-16x+44 | | (3,5);m=-6 | | –15x–20x–x= | | (6x-30)=(8x=28)=180 | | -3x+8+7x+4=-2(3x-16) | | 9x+9-4x=3 | | (y-52)+122=180 | | 65=3/4e-7 | | (2w-1)/5+w+2=2 | | 7=f+257 | | 2x-+12=-8 | | 12=4+x/12 | | 7=f+25÷7 | | 1/2x-3=2x+6 | | 169=(2x)(x)÷2 | | 7=f+25 | | 4x+16x-8=4(5x | | 8+r/10=9 | | -3(3p+5)-2(3-14p)=3(6+6p) | | 9x+5=2x-99x+5=2x-9 | | M^=16m | | (6t-3)16=200 | | 3x+8.7=-x/8 | | 6x+5=1x+40= | | -1x+10=-2(1x-1) | | 3(3+x)+(x-6)=-4 | | 7=f+25/7 | | 0.5k-3=2-0.75 | | 8.2x=1.7x+65 | | (z-5/4)=8 | | -2-4f=-3f |

Equations solver categories