7/10a+3/2=3/5a+2

Simple and best practice solution for 7/10a+3/2=3/5a+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/10a+3/2=3/5a+2 equation:



7/10a+3/2=3/5a+2
We move all terms to the left:
7/10a+3/2-(3/5a+2)=0
Domain of the equation: 10a!=0
a!=0/10
a!=0
a∈R
Domain of the equation: 5a+2)!=0
a∈R
We get rid of parentheses
7/10a-3/5a-2+3/2=0
We calculate fractions
750a^2/200a^2+140a/200a^2+(-120a)/200a^2-2=0
We multiply all the terms by the denominator
750a^2+140a+(-120a)-2*200a^2=0
Wy multiply elements
750a^2-400a^2+140a+(-120a)=0
We get rid of parentheses
750a^2-400a^2+140a-120a=0
We add all the numbers together, and all the variables
350a^2+20a=0
a = 350; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·350·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*350}=\frac{-40}{700} =-2/35 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*350}=\frac{0}{700} =0 $

See similar equations:

| 10+2x+30=x+29 | | 1/4x=8/3 | | 4(2z-1)-5=3z+z | | -2/5j+9=3 | | E^(5x+4)=14 | | 6x+3x-4=10x+10 | | -17+-8j=-41 | | 3/5x+7=11 | | 40(x)+5(x*1.5)=850 | | -3x=4x-6 | | 7x-5=13-9x | | -18=4(2+w)+6 | | 4-3v=7-2v | | b-3/16=1 | | 8-2(n+4)=18 | | 3q+10q-5=-18 | | 4x-3+2=2x+3x | | 720=375+34.5p | | -27=v/5 | | 9y-5=14y-5 | | 8-2(n+6)=18 | | 8-2n(n+4)=18 | | F(5)=2x^2+9x | | -9x+8=-7-6x | | 2.1=(2.7n+2.4 | | 21=m-4m | | 5(z+20)=7z+30 | | 210=(9+d)(10) | | -3+6c=7c | | 2g+2(-7+4g)=1-9 | | 90+x+(2x-60)=180 | | 3b+6-3=213 |

Equations solver categories