If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/(x+5)-8(66x+30)=-2
We move all terms to the left:
7/(x+5)-8(66x+30)-(-2)=0
Domain of the equation: (x+5)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x!=-5
x∈R
7/(x+5)-8(66x+30)+2=0
We multiply parentheses
7/(x+5)-528x-240+2=0
We multiply all the terms by the denominator
-528x*(x+5)-240*(x+5)+2*(x+5)+7=0
We multiply parentheses
-528x^2-2640x-240x+2x-1200+10+7=0
We add all the numbers together, and all the variables
-528x^2-2878x-1183=0
a = -528; b = -2878; c = -1183;
Δ = b2-4ac
Δ = -28782-4·(-528)·(-1183)
Δ = 5784388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5784388}=\sqrt{4*1446097}=\sqrt{4}*\sqrt{1446097}=2\sqrt{1446097}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2878)-2\sqrt{1446097}}{2*-528}=\frac{2878-2\sqrt{1446097}}{-1056} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2878)+2\sqrt{1446097}}{2*-528}=\frac{2878+2\sqrt{1446097}}{-1056} $
| 16x^2-28x-98=0 | | 3,6*x-2,5=4,8*x+1,1 | | -x^2+6.5x-10.5625=0 | | 16/9+6c=30 | | 2x/4-5/3=x-7/2 | | (13x+2)(5x-7)=(3x-4) | | 6+x.2=82 | | x+(x+100)=100 | | -x^2-6.5x+10.5625=0 | | -5x-7=-6x+15 | | x^2-6.5x+10.5625=0 | | 4-(b-3)=31 | | 3a+5=49 | | 3y’+2y=4 | | 4=7n | | 11x-9=-4x+23 | | 32x=31x+5 | | 3/11b=10 | | -4x-5+x=-10x+30 | | 5x2+10x+56=0 | | 3n+2,n=2 | | 5x+5+5x+51=10x–84+10x+100 | | 5x+6=14x-32 | | 5x+6=14x-38 | | 4x+(×+2)=32 | | 4x^2-24x-540=0 | | 4z-16=8 | | 1.3=1.0+0.3x4.3=4.0+0.3= | | 25x4+40x2+16=0 | | P(q)=90-3q | | 3.6*x-2.5=4.8*x+1.1 | | -7=2x-2 |