If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7.4(9.5x-80)=99-5/12x
We move all terms to the left:
7.4(9.5x-80)-(99-5/12x)=0
Domain of the equation: 12x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
7.4(9.5x-80)-(-5/12x+99)=0
We multiply parentheses
66.6x-(-5/12x+99)-592=0
We get rid of parentheses
66.6x+5/12x-99-592=0
We multiply all the terms by the denominator
(66.6x)*12x-99*12x-592*12x+5=0
We add all the numbers together, and all the variables
(+66.6x)*12x-99*12x-592*12x+5=0
We multiply parentheses
792x^2-99*12x-592*12x+5=0
Wy multiply elements
792x^2-1188x-7104x+5=0
We add all the numbers together, and all the variables
792x^2-8292x+5=0
a = 792; b = -8292; c = +5;
Δ = b2-4ac
Δ = -82922-4·792·5
Δ = 68741424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68741424}=\sqrt{144*477371}=\sqrt{144}*\sqrt{477371}=12\sqrt{477371}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8292)-12\sqrt{477371}}{2*792}=\frac{8292-12\sqrt{477371}}{1584} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8292)+12\sqrt{477371}}{2*792}=\frac{8292+12\sqrt{477371}}{1584} $
| 2x+1-7x=5x+4 | | 7x+4=-5x+4+12x | | 3x+2x+4=398 | | -2x-5=4x-5 | | -6(3+4x)-5(x-3)=55 | | 3(a+8)-8a=-7(a-6) | | 5m-8m+16=10m+6-4m | | ×+3=2x+12 | | 4r+3r=7r | | -1+2(v-3)=-23 | | x-15=12+4x | | 2x+14=3x+-11 | | Y=0.5x+35 | | -10-4x=x-5 | | 4/3*y+2=18 | | –7f=–10−9f | | 4(8m+5)=4(6m+7)-13 | | -2x−8=−28 | | 3x+-1+6x=2x+-7 | | 5x+2+18=9x | | 8(-6j)24=12 | | 3x=4x-6+3 | | 8(6+b)=24 | | 125m-100m+34,125=35,875-150m | | -9=7x+x=7 | | 6b+8=5b+10 | | 5/3y=31 | | h/3+21=-4 | | 7(x-4)=5x*6 | | 10(9x+3)-x=92x+30 | | 3r+12=36-7r | | (4x+11)=(3x+1) |