7-5/2*8r-6+2r=32

Simple and best practice solution for 7-5/2*8r-6+2r=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7-5/2*8r-6+2r=32 equation:



7-5/2*8r-6+2r=32
We move all terms to the left:
7-5/2*8r-6+2r-(32)=0
Domain of the equation: 2*8r!=0
r!=0/1
r!=0
r∈R
We add all the numbers together, and all the variables
2r-5/2*8r-31=0
We multiply all the terms by the denominator
2r*2*8r-31*2*8r-5=0
Wy multiply elements
32r^2*8-496r*8-5=0
Wy multiply elements
256r^2-3968r-5=0
a = 256; b = -3968; c = -5;
Δ = b2-4ac
Δ = -39682-4·256·(-5)
Δ = 15750144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15750144}=\sqrt{9216*1709}=\sqrt{9216}*\sqrt{1709}=96\sqrt{1709}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3968)-96\sqrt{1709}}{2*256}=\frac{3968-96\sqrt{1709}}{512} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3968)+96\sqrt{1709}}{2*256}=\frac{3968+96\sqrt{1709}}{512} $

See similar equations:

| -3(1-6k=6k+21 | | 28p-40-4p^2=0 | | 4x-2x+5=24-2x=5-8x | | -4v=-3v-17 | | 8+3/n=-2 | | 20-17f+20=-8-20f | | -9+9k-9=2k+10 | | -9m=-6-6m | | 6(v-6)+4=-32+6v | | 6c+1=10+5c | | 20x-8/3=0 | | 23-2y=15-y | | 12c+81=10c | | 6x2+28x-2=2x-10 | | 6x-5-2x=11 | | 2v+8=2(v+4) | | .002=4(t)+.5(-9.8)T^2 | | -2x-4=14-4x | | H(t)=-0.4t^2+92t+25 | | -9+5f+3=-3f+10 | | -83=-28+-5b | | m=-9m-10 | | x-1+4x=19 | | 6=27/n-2 | | -6+8p=3+7p | | 2a+4=2a+15 | | 4=3x²+6x | | 9=(2x+5)/7 | | 4=3.x²+6.x | | 9/a+8=17 | | 9(2x-5)=7 | | h-8=-h |

Equations solver categories