7-4(9y+1)=11y(-25y+3)

Simple and best practice solution for 7-4(9y+1)=11y(-25y+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7-4(9y+1)=11y(-25y+3) equation:



7-4(9y+1)=11y(-25y+3)
We move all terms to the left:
7-4(9y+1)-(11y(-25y+3))=0
We multiply parentheses
-36y-(11y(-25y+3))-4+7=0
We calculate terms in parentheses: -(11y(-25y+3)), so:
11y(-25y+3)
We multiply parentheses
-275y^2+33y
Back to the equation:
-(-275y^2+33y)
We add all the numbers together, and all the variables
-(-275y^2+33y)-36y+3=0
We get rid of parentheses
275y^2-33y-36y+3=0
We add all the numbers together, and all the variables
275y^2-69y+3=0
a = 275; b = -69; c = +3;
Δ = b2-4ac
Δ = -692-4·275·3
Δ = 1461
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-69)-\sqrt{1461}}{2*275}=\frac{69-\sqrt{1461}}{550} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-69)+\sqrt{1461}}{2*275}=\frac{69+\sqrt{1461}}{550} $

See similar equations:

| 182=5x | | 15=6x-2-4x-3 | | 2=6.3x+35.63 | | -8x–90=2x–30 | | 4/5x=-8/9 | | z+2.3=8.4 | | 1/2x+3/4x=7 | | 3(8y+2)=30 | | 6x+14=102 | | 6n-3(n+2)=24 | | -6=x=-11 | | 250+50w=4000 | | 27=-6w+3(w+6) | | 3(2x+2)-1=3 | | 3m-7=-37 | | 3u-5u—9=-3 | | 6=-7u+5(u+4) | | 4m+3=(2m-5) | | 9y-1=1y+25 | | 14=3h=5h | | 2y+17=6y*5 | | 10x−2(2x−10)=52−2x | | 7(1+4m)-3m=82 | | .8x=128 | | 4x–16=4(x+24) | | −1/2x−(1/2x+4)+12=17x−6(3x+5/6) | | -8x7=-34 | | 36x-2+35x=180 | | 6x-2=12x | | 3m-7=37 | | 20y-2=8 | | x−34=8 |

Equations solver categories