7-2(3x-4)=9+5x(-x+3)

Simple and best practice solution for 7-2(3x-4)=9+5x(-x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7-2(3x-4)=9+5x(-x+3) equation:



7-2(3x-4)=9+5x(-x+3)
We move all terms to the left:
7-2(3x-4)-(9+5x(-x+3))=0
We add all the numbers together, and all the variables
-2(3x-4)-(9+5x(-1x+3))+7=0
We multiply parentheses
-6x-(9+5x(-1x+3))+8+7=0
We calculate terms in parentheses: -(9+5x(-1x+3)), so:
9+5x(-1x+3)
determiningTheFunctionDomain 5x(-1x+3)+9
We multiply parentheses
-5x^2+15x+9
Back to the equation:
-(-5x^2+15x+9)
We add all the numbers together, and all the variables
-(-5x^2+15x+9)-6x+15=0
We get rid of parentheses
5x^2-15x-6x-9+15=0
We add all the numbers together, and all the variables
5x^2-21x+6=0
a = 5; b = -21; c = +6;
Δ = b2-4ac
Δ = -212-4·5·6
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{321}}{2*5}=\frac{21-\sqrt{321}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{321}}{2*5}=\frac{21+\sqrt{321}}{10} $

See similar equations:

| 17=2+2m+m | | -1(x)=−3x2+2x−5 | | 43x+1=16x+2 | | 15x-3(2x-9)=9(x-1)+1 | | -9(5-3x)=7 | | -4/9(9-2k)=1/2(1/3k+1) | | 4b–8=6 | | 3x¥2=14 | | 4+11x=6x+3+5x | | 2x+12=54-3x+9 | | 1=2n−7 | | 2x-19+5x-9=21 | | 7-2(x-5)=13 | | 6x+22=70+10x-7 | | 4x+29=5-8(x-6) | | 9.y=27 | | 3(n+3)=4(-n+1)+5 | | −14+3x=10 | | 4-(2x+9)=11 | | -x/8=27 | | -7x+12=-72-9x | | 162=-9a+9 | | -5x-(-74x)=-2(3x-4) | | 3x/8-8=2 | | -5(1-3m)=6m-32 | | 11-4a=-2a-8+7 | | 7x+12=-72+9x | | 41=17+6r | | y+-4=-14 | | -1-(-8+3k)=-k+9 | | x+x3=80 | | -8(5+6r)=7-r |

Equations solver categories