7+3/2x=4x-5/2x

Simple and best practice solution for 7+3/2x=4x-5/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7+3/2x=4x-5/2x equation:



7+3/2x=4x-5/2x
We move all terms to the left:
7+3/2x-(4x-5/2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/2x-(+4x-5/2x)+7=0
We get rid of parentheses
3/2x-4x+5/2x+7=0
We multiply all the terms by the denominator
-4x*2x+7*2x+3+5=0
We add all the numbers together, and all the variables
-4x*2x+7*2x+8=0
Wy multiply elements
-8x^2+14x+8=0
a = -8; b = 14; c = +8;
Δ = b2-4ac
Δ = 142-4·(-8)·8
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{113}}{2*-8}=\frac{-14-2\sqrt{113}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{113}}{2*-8}=\frac{-14+2\sqrt{113}}{-16} $

See similar equations:

| 2x-1+x-5=2x+8 | | 10y-4y=6y-12 | | 2(3-4x)=-(6-x)+4 | | 2x3=-128 | | 9x-6=3(2x+7) | | 6|6y-2|-4=14 | | 4x7=(10x7)+(6x7)= | | 4+6r+r=-3 | | -4w+8=12 | | 53=4a+17 | | 87=33d+54 | | 0.72-0.12x=1.3x-9.7 | | 5x+9x+54=180 | | -8y=-3y-16 | | -30+8x=7(x-4 | | 2(9x)=2(2x+11) | | -1.5(3x+15)-5=4 | | y+13=0.6 | | –10−4d=–5d | | -8+2x=3x-13 | | 3775-25m=6050 | | 5x-2+4x+11=180 | | 2+7a+2a=-7 | | 12+2x-x=x+6 | | 6(1-2x0-3(x+1)=0 | | -14=3a+4 | |  x − 7  =  −9 | | X÷y=200;40×-y= | | (3/5)p-8=13 | | X÷y=200;40×-y=2 | | 16+2m=3m-14 | | 72=3p |

Equations solver categories