7+2(3x-4)=9+5x(-x+3)

Simple and best practice solution for 7+2(3x-4)=9+5x(-x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7+2(3x-4)=9+5x(-x+3) equation:



7+2(3x-4)=9+5x(-x+3)
We move all terms to the left:
7+2(3x-4)-(9+5x(-x+3))=0
We add all the numbers together, and all the variables
2(3x-4)-(9+5x(-1x+3))+7=0
We multiply parentheses
6x-(9+5x(-1x+3))-8+7=0
We calculate terms in parentheses: -(9+5x(-1x+3)), so:
9+5x(-1x+3)
determiningTheFunctionDomain 5x(-1x+3)+9
We multiply parentheses
-5x^2+15x+9
Back to the equation:
-(-5x^2+15x+9)
We add all the numbers together, and all the variables
-(-5x^2+15x+9)+6x-1=0
We get rid of parentheses
5x^2-15x+6x-9-1=0
We add all the numbers together, and all the variables
5x^2-9x-10=0
a = 5; b = -9; c = -10;
Δ = b2-4ac
Δ = -92-4·5·(-10)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{281}}{2*5}=\frac{9-\sqrt{281}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{281}}{2*5}=\frac{9+\sqrt{281}}{10} $

See similar equations:

| -85=7x+x+3 | | 2b-8/6=b | | g+1/2=2 | | 5(3x+9)-2x=15x-2(x-5)= | | 2(a–4)+3a=48 | | 10x-61=x | | 2(5x+6)=-46+18 | | 8-q=4 | | x=-36+2x | | -5x+12=52,x=-8 | | 2x-4+8x=7x-8+3x* | | 1/x-3+3/x+3=10/x^2-9 | | 2v−4=4 | | 17y+22=141 | | -6x+8(2x+1)=8x-8 | | 2(8x+2)=2(2x-7) | | 2x-5=52x | | 2+3z=5z | | 6x-10=12+6x | | (3x+11)=(6x-47) | | 5x+.8=30.8 | | 8+2n=2n+1+1 | | -.75(4x+14)=-3x-15 | | 7(x+2)=8 | | 5(x-4)+3x+8=28 | | x+2/2=3-x+1/3 | | 18=5+e | | 9x-3(x+6)=2(3x-9) | | 1=-3+x/14 | | 3(m-2)+4=3m-7 | | 13=-8x+9+5x+8 | | 10x-5=4x+4= |

Equations solver categories