7+1/5b=3/10b

Simple and best practice solution for 7+1/5b=3/10b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7+1/5b=3/10b equation:



7+1/5b=3/10b
We move all terms to the left:
7+1/5b-(3/10b)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
Domain of the equation: 10b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
1/5b-(+3/10b)+7=0
We get rid of parentheses
1/5b-3/10b+7=0
We calculate fractions
10b/50b^2+(-15b)/50b^2+7=0
We multiply all the terms by the denominator
10b+(-15b)+7*50b^2=0
Wy multiply elements
350b^2+10b+(-15b)=0
We get rid of parentheses
350b^2+10b-15b=0
We add all the numbers together, and all the variables
350b^2-5b=0
a = 350; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·350·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*350}=\frac{0}{700} =0 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*350}=\frac{10}{700} =1/70 $

See similar equations:

| 13(x-1)=65 | | 28+12x28=-4 | | 3x-5=-2+7 | | 3.84x+30.72=7.68x+61.44 | | 5-5x=7x-43 | | 35x^+51x-8=0 | | -u/7=24 | | 2(−1+6h)(1−6h)+2(−1+6h)−(−1+6h)2−2(1−6h)2=0 | | v+19/15=0 | | P+27=2p | | -2•p=p | | 75x+9=95 | | 4=(r+15)/7 | | a+53/10=9 | | -32=x/4 | | 3x+12+12x-22=180 | | 3x+1212x-22=180 | | 2x+27=3x-19 | | y=41.44-0.405(38) | | 3h=7(​7/​2​​−​7​/​3​​h)−10 | | 3x+1212x-22=170 | | 21=5n-2(2-3) | | 104=-4(-3x-5) | | -3(5p-1)-2(1+3p)=1=1-6p-4p | | 5x+5=-7x+17 | | (t-2)^2=-16 | | 10×x=4 | | 2(2x+1)=3x+11 | | 40+14j=3(-4j-13) | | 40(15+x)=1280 | | 2^(x+6)=0 | | 3t−18=4 |

Equations solver categories