7(x+2)=6(x+5)x=-44x=-16x=16x=44

Simple and best practice solution for 7(x+2)=6(x+5)x=-44x=-16x=16x=44 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(x+2)=6(x+5)x=-44x=-16x=16x=44 equation:



7(x+2)=6(x+5)x=-44x=-16x=16x=44
We move all terms to the left:
7(x+2)-(6(x+5)x)=0
We multiply parentheses
7x-(6(x+5)x)+14=0
We calculate terms in parentheses: -(6(x+5)x), so:
6(x+5)x
We multiply parentheses
6x^2+30x
Back to the equation:
-(6x^2+30x)
We get rid of parentheses
-6x^2+7x-30x+14=0
We add all the numbers together, and all the variables
-6x^2-23x+14=0
a = -6; b = -23; c = +14;
Δ = b2-4ac
Δ = -232-4·(-6)·14
Δ = 865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{865}}{2*-6}=\frac{23-\sqrt{865}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{865}}{2*-6}=\frac{23+\sqrt{865}}{-12} $

See similar equations:

| 24÷6=x | | 6x-6=-9 | | 6(d-3)+5=d-3 | | 3x+11+2x+19=180 | | 120=5(3+7a) | | 0=-16t^2+4t+12 | | 5^(x+1)=50 | | 3xYxP+2xP=10 | | 6*y+10=84 | | 2w+6=-4-3w | | 4x+3.4=28 | | -12=4(w–18)–16 | | 5×0.05+x×0.3=(5+x)×0.2 | | 6+21y=-15 | | 4x+3×4=28 | | n/9-7/18=1/9 | | 5c-2c+7=5c+3 | | 4x-3/8+x=4x+3/4+5 | | 2x-19=4x+4 | | 18x²-6x-4=0 | | 81=-6n-3(n-6) | | 4(b+4)=3(b+6) | | n/2=-11 | | 250x+45=95-150 | | h/6+25=28 | | -6(n-4)=-5n-6 | | 0=-t^2+4t+12 | | 40x+20(-117/290)=-11 | | 0=7p+8p | | h/6+ 25= 28 | | 10+x+18-12=34 | | 12983+m=21137 |

Equations solver categories